MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzen2 Structured version   Unicode version

Theorem fzen2 12082
Description: The cardinality of a finite set of sequential integers with arbitrary endpoints. (Contributed by Mario Carneiro, 13-Feb-2014.)
Hypothesis
Ref Expression
fzennn.1  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om )
Assertion
Ref Expression
fzen2  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M ... N )  ~~  ( `' G `  ( ( N  +  1 )  -  M ) ) )

Proof of Theorem fzen2
StepHypRef Expression
1 eluzel2 11111 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
2 eluzelz 11115 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
3 1z 10915 . . . . 5  |-  1  e.  ZZ
4 zsubcl 10927 . . . . 5  |-  ( ( 1  e.  ZZ  /\  M  e.  ZZ )  ->  ( 1  -  M
)  e.  ZZ )
53, 1, 4sylancr 663 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( 1  -  M )  e.  ZZ )
6 fzen 11728 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  (
1  -  M )  e.  ZZ )  -> 
( M ... N
)  ~~  ( ( M  +  ( 1  -  M ) ) ... ( N  +  ( 1  -  M
) ) ) )
71, 2, 5, 6syl3anc 1228 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M ... N )  ~~  (
( M  +  ( 1  -  M ) ) ... ( N  +  ( 1  -  M ) ) ) )
81zcnd 10991 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  CC )
9 ax-1cn 9567 . . . . 5  |-  1  e.  CC
10 pncan3 9847 . . . . 5  |-  ( ( M  e.  CC  /\  1  e.  CC )  ->  ( M  +  ( 1  -  M ) )  =  1 )
118, 9, 10sylancl 662 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M  +  ( 1  -  M ) )  =  1 )
12 zcn 10890 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  CC )
13 zcn 10890 . . . . . . 7  |-  ( M  e.  ZZ  ->  M  e.  CC )
14 addsubass 9849 . . . . . . . 8  |-  ( ( N  e.  CC  /\  1  e.  CC  /\  M  e.  CC )  ->  (
( N  +  1 )  -  M )  =  ( N  +  ( 1  -  M
) ) )
159, 14mp3an2 1312 . . . . . . 7  |-  ( ( N  e.  CC  /\  M  e.  CC )  ->  ( ( N  + 
1 )  -  M
)  =  ( N  +  ( 1  -  M ) ) )
1612, 13, 15syl2an 477 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( N  + 
1 )  -  M
)  =  ( N  +  ( 1  -  M ) ) )
172, 1, 16syl2anc 661 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( N  +  1 )  -  M )  =  ( N  +  ( 1  -  M ) ) )
1817eqcomd 2465 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  +  ( 1  -  M ) )  =  ( ( N  + 
1 )  -  M
) )
1911, 18oveq12d 6314 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( M  +  ( 1  -  M ) ) ... ( N  +  ( 1  -  M
) ) )  =  ( 1 ... (
( N  +  1 )  -  M ) ) )
207, 19breqtrd 4480 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M ... N )  ~~  (
1 ... ( ( N  +  1 )  -  M ) ) )
21 peano2uz 11159 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  +  1 )  e.  ( ZZ>= `  M )
)
22 uznn0sub 11137 . . 3  |-  ( ( N  +  1 )  e.  ( ZZ>= `  M
)  ->  ( ( N  +  1 )  -  M )  e. 
NN0 )
23 fzennn.1 . . . 4  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om )
2423fzennn 12081 . . 3  |-  ( ( ( N  +  1 )  -  M )  e.  NN0  ->  ( 1 ... ( ( N  +  1 )  -  M ) )  ~~  ( `' G `  ( ( N  +  1 )  -  M ) ) )
2521, 22, 243syl 20 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( 1 ... ( ( N  +  1 )  -  M ) )  ~~  ( `' G `  ( ( N  +  1 )  -  M ) ) )
26 entr 7586 . 2  |-  ( ( ( M ... N
)  ~~  ( 1 ... ( ( N  +  1 )  -  M ) )  /\  ( 1 ... (
( N  +  1 )  -  M ) )  ~~  ( `' G `  ( ( N  +  1 )  -  M ) ) )  ->  ( M ... N )  ~~  ( `' G `  ( ( N  +  1 )  -  M ) ) )
2720, 25, 26syl2anc 661 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M ... N )  ~~  ( `' G `  ( ( N  +  1 )  -  M ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 1819   _Vcvv 3109   class class class wbr 4456    |-> cmpt 4515   `'ccnv 5007    |` cres 5010   ` cfv 5594  (class class class)co 6296   omcom 6699   reccrdg 7093    ~~ cen 7532   CCcc 9507   0cc0 9509   1c1 9510    + caddc 9512    - cmin 9824   NN0cn0 10816   ZZcz 10885   ZZ>=cuz 11106   ...cfz 11697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-n0 10817  df-z 10886  df-uz 11107  df-fz 11698
This theorem is referenced by:  fzfi  12085
  Copyright terms: Public domain W3C validator