MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fz1f1o Structured version   Unicode version

Theorem fz1f1o 13185
Description: A lemma for working with finite sums. (Contributed by Mario Carneiro, 22-Apr-2014.)
Assertion
Ref Expression
fz1f1o  |-  ( A  e.  Fin  ->  ( A  =  (/)  \/  (
( # `  A )  e.  NN  /\  E. f  f : ( 1 ... ( # `  A ) ) -1-1-onto-> A ) ) )
Distinct variable group:    A, f

Proof of Theorem fz1f1o
StepHypRef Expression
1 hashcl 12124 . . . 4  |-  ( A  e.  Fin  ->  ( # `
 A )  e. 
NN0 )
2 elnn0 10579 . . . 4  |-  ( (
# `  A )  e.  NN0  <->  ( ( # `  A )  e.  NN  \/  ( # `  A
)  =  0 ) )
31, 2sylib 196 . . 3  |-  ( A  e.  Fin  ->  (
( # `  A )  e.  NN  \/  ( # `
 A )  =  0 ) )
43orcomd 388 . 2  |-  ( A  e.  Fin  ->  (
( # `  A )  =  0  \/  ( # `
 A )  e.  NN ) )
5 hasheq0 12129 . . 3  |-  ( A  e.  Fin  ->  (
( # `  A )  =  0  <->  A  =  (/) ) )
6 hashfz1 12115 . . . . . . 7  |-  ( (
# `  A )  e.  NN0  ->  ( # `  (
1 ... ( # `  A
) ) )  =  ( # `  A
) )
71, 6syl 16 . . . . . 6  |-  ( A  e.  Fin  ->  ( # `
 ( 1 ... ( # `  A
) ) )  =  ( # `  A
) )
8 fzfi 11792 . . . . . . 7  |-  ( 1 ... ( # `  A
) )  e.  Fin
9 hashen 12116 . . . . . . 7  |-  ( ( ( 1 ... ( # `
 A ) )  e.  Fin  /\  A  e.  Fin )  ->  (
( # `  ( 1 ... ( # `  A
) ) )  =  ( # `  A
)  <->  ( 1 ... ( # `  A
) )  ~~  A
) )
108, 9mpan 670 . . . . . 6  |-  ( A  e.  Fin  ->  (
( # `  ( 1 ... ( # `  A
) ) )  =  ( # `  A
)  <->  ( 1 ... ( # `  A
) )  ~~  A
) )
117, 10mpbid 210 . . . . 5  |-  ( A  e.  Fin  ->  (
1 ... ( # `  A
) )  ~~  A
)
12 bren 7317 . . . . 5  |-  ( ( 1 ... ( # `  A ) )  ~~  A 
<->  E. f  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A )
1311, 12sylib 196 . . . 4  |-  ( A  e.  Fin  ->  E. f 
f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )
1413biantrud 507 . . 3  |-  ( A  e.  Fin  ->  (
( # `  A )  e.  NN  <->  ( ( # `
 A )  e.  NN  /\  E. f 
f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) ) )
155, 14orbi12d 709 . 2  |-  ( A  e.  Fin  ->  (
( ( # `  A
)  =  0  \/  ( # `  A
)  e.  NN )  <-> 
( A  =  (/)  \/  ( ( # `  A
)  e.  NN  /\  E. f  f : ( 1 ... ( # `  A ) ) -1-1-onto-> A ) ) ) )
164, 15mpbid 210 1  |-  ( A  e.  Fin  ->  ( A  =  (/)  \/  (
( # `  A )  e.  NN  /\  E. f  f : ( 1 ... ( # `  A ) ) -1-1-onto-> A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1369   E.wex 1586    e. wcel 1756   (/)c0 3635   class class class wbr 4290   -1-1-onto->wf1o 5415   ` cfv 5416  (class class class)co 6089    ~~ cen 7305   Fincfn 7308   0cc0 9280   1c1 9281   NNcn 10320   NN0cn0 10577   ...cfz 11435   #chash 12101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-sep 4411  ax-nul 4419  ax-pow 4468  ax-pr 4529  ax-un 6370  ax-cnex 9336  ax-resscn 9337  ax-1cn 9338  ax-icn 9339  ax-addcl 9340  ax-addrcl 9341  ax-mulcl 9342  ax-mulrcl 9343  ax-mulcom 9344  ax-addass 9345  ax-mulass 9346  ax-distr 9347  ax-i2m1 9348  ax-1ne0 9349  ax-1rid 9350  ax-rnegex 9351  ax-rrecex 9352  ax-cnre 9353  ax-pre-lttri 9354  ax-pre-lttrn 9355  ax-pre-ltadd 9356  ax-pre-mulgt0 9357
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3185  df-csb 3287  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-pss 3342  df-nul 3636  df-if 3790  df-pw 3860  df-sn 3876  df-pr 3878  df-tp 3880  df-op 3882  df-uni 4090  df-int 4127  df-iun 4171  df-br 4291  df-opab 4349  df-mpt 4350  df-tr 4384  df-eprel 4630  df-id 4634  df-po 4639  df-so 4640  df-fr 4677  df-we 4679  df-ord 4720  df-on 4721  df-lim 4722  df-suc 4723  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-res 4850  df-ima 4851  df-iota 5379  df-fun 5418  df-fn 5419  df-f 5420  df-f1 5421  df-fo 5422  df-f1o 5423  df-fv 5424  df-riota 6050  df-ov 6092  df-oprab 6093  df-mpt2 6094  df-om 6475  df-1st 6575  df-2nd 6576  df-recs 6830  df-rdg 6864  df-1o 6918  df-er 7099  df-en 7309  df-dom 7310  df-sdom 7311  df-fin 7312  df-card 8107  df-pnf 9418  df-mnf 9419  df-xr 9420  df-ltxr 9421  df-le 9422  df-sub 9595  df-neg 9596  df-nn 10321  df-n0 10578  df-z 10645  df-uz 10860  df-fz 11436  df-hash 12102
This theorem is referenced by:  sumz  13197  fsumf1o  13198  fsumss  13200  fsumcl2lem  13206  fsumadd  13213  fsummulc2  13249  fsumconst  13255  fsumrelem  13268  gsumval3eu  16379  gsumzres  16386  gsumzcl2  16387  gsumzf1o  16389  gsumzresOLD  16390  gsumzclOLD  16391  gsumzf1oOLD  16392  gsumzaddlem  16406  gsumzaddlemOLD  16408  gsumconst  16425  gsumzmhm  16428  gsumzmhmOLD  16429  gsumzoppg  16438  gsumzoppgOLD  16439  gsumfsum  17877  prod1  27455  fprodf1o  27457  fprodss  27459  fprodcl2lem  27461  fprodmul  27469  fproddiv  27470  fprodconst  27487  fprodn0  27488  stoweidlem35  29827  stoweidlem39  29831
  Copyright terms: Public domain W3C validator