MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvun1 Structured version   Unicode version

Theorem fvun1 5945
Description: The value of a union when the argument is in the first domain. (Contributed by Scott Fenton, 29-Jun-2013.)
Assertion
Ref Expression
fvun1  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  A ) )  -> 
( ( F  u.  G ) `  X
)  =  ( F `
 X ) )

Proof of Theorem fvun1
StepHypRef Expression
1 fnfun 5684 . . . 4  |-  ( F  Fn  A  ->  Fun  F )
213ad2ant1 1017 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  A ) )  ->  Fun  F )
3 fnfun 5684 . . . 4  |-  ( G  Fn  B  ->  Fun  G )
433ad2ant2 1018 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  A ) )  ->  Fun  G )
5 fndm 5686 . . . . . . . 8  |-  ( F  Fn  A  ->  dom  F  =  A )
6 fndm 5686 . . . . . . . 8  |-  ( G  Fn  B  ->  dom  G  =  B )
75, 6ineqan12d 3707 . . . . . . 7  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( dom  F  i^i  dom 
G )  =  ( A  i^i  B ) )
87eqeq1d 2469 . . . . . 6  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( ( dom  F  i^i  dom  G )  =  (/) 
<->  ( A  i^i  B
)  =  (/) ) )
98biimprd 223 . . . . 5  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( ( A  i^i  B )  =  (/)  ->  ( dom  F  i^i  dom  G
)  =  (/) ) )
109adantrd 468 . . . 4  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( ( ( A  i^i  B )  =  (/)  /\  X  e.  A
)  ->  ( dom  F  i^i  dom  G )  =  (/) ) )
11103impia 1193 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  A ) )  -> 
( dom  F  i^i  dom 
G )  =  (/) )
12 fvun 5944 . . 3  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( ( F  u.  G ) `  X
)  =  ( ( F `  X )  u.  ( G `  X ) ) )
132, 4, 11, 12syl21anc 1227 . 2  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  A ) )  -> 
( ( F  u.  G ) `  X
)  =  ( ( F `  X )  u.  ( G `  X ) ) )
14 disjel 3878 . . . . . . . 8  |-  ( ( ( A  i^i  B
)  =  (/)  /\  X  e.  A )  ->  -.  X  e.  B )
1514adantl 466 . . . . . . 7  |-  ( ( G  Fn  B  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  A ) )  ->  -.  X  e.  B
)
166eleq2d 2537 . . . . . . . 8  |-  ( G  Fn  B  ->  ( X  e.  dom  G  <->  X  e.  B ) )
1716adantr 465 . . . . . . 7  |-  ( ( G  Fn  B  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  A ) )  -> 
( X  e.  dom  G  <-> 
X  e.  B ) )
1815, 17mtbird 301 . . . . . 6  |-  ( ( G  Fn  B  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  A ) )  ->  -.  X  e.  dom  G )
19183adant1 1014 . . . . 5  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  A ) )  ->  -.  X  e.  dom  G )
20 ndmfv 5896 . . . . 5  |-  ( -.  X  e.  dom  G  ->  ( G `  X
)  =  (/) )
2119, 20syl 16 . . . 4  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  A ) )  -> 
( G `  X
)  =  (/) )
2221uneq2d 3663 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  A ) )  -> 
( ( F `  X )  u.  ( G `  X )
)  =  ( ( F `  X )  u.  (/) ) )
23 un0 3815 . . 3  |-  ( ( F `  X )  u.  (/) )  =  ( F `  X )
2422, 23syl6eq 2524 . 2  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  A ) )  -> 
( ( F `  X )  u.  ( G `  X )
)  =  ( F `
 X ) )
2513, 24eqtrd 2508 1  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  A ) )  -> 
( ( F  u.  G ) `  X
)  =  ( F `
 X ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    u. cun 3479    i^i cin 3480   (/)c0 3790   dom cdm 5005   Fun wfun 5588    Fn wfn 5589   ` cfv 5594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-sbc 3337  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-br 4454  df-opab 4512  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-fv 5602
This theorem is referenced by:  fvun2  5946  enfixsn  7638  hashf1lem1  12485  xpsc0  14832  ptunhmeo  20177  axlowdimlem6  24073  axlowdimlem8  24075  axlowdimlem11  24078  constr3lem4  24470  vdgrun  24724  vdgrfiun  24725  isoun  27343  sseqfv1  28153  cvmliftlem5  28559  fullfunfv  29524  finixpnum  29965
  Copyright terms: Public domain W3C validator