MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvtp1g Structured version   Unicode version

Theorem fvtp1g 6036
Description: The value of a function with a domain of (at most) three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017.)
Assertion
Ref Expression
fvtp1g  |-  ( ( ( A  e.  V  /\  D  e.  W
)  /\  ( A  =/=  B  /\  A  =/= 
C ) )  -> 
( { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. } `  A
)  =  D )

Proof of Theorem fvtp1g
StepHypRef Expression
1 df-tp 3989 . . 3  |-  { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. }  =  ( { <. A ,  D >. ,  <. B ,  E >. }  u.  { <. C ,  F >. } )
21fveq1i 5799 . 2  |-  ( {
<. A ,  D >. , 
<. B ,  E >. , 
<. C ,  F >. } `
 A )  =  ( ( { <. A ,  D >. ,  <. B ,  E >. }  u.  {
<. C ,  F >. } ) `  A )
3 necom 2720 . . . . 5  |-  ( A  =/=  C  <->  C  =/=  A )
4 fvunsn 6018 . . . . 5  |-  ( C  =/=  A  ->  (
( { <. A ,  D >. ,  <. B ,  E >. }  u.  { <. C ,  F >. } ) `  A )  =  ( { <. A ,  D >. ,  <. B ,  E >. } `  A ) )
53, 4sylbi 195 . . . 4  |-  ( A  =/=  C  ->  (
( { <. A ,  D >. ,  <. B ,  E >. }  u.  { <. C ,  F >. } ) `  A )  =  ( { <. A ,  D >. ,  <. B ,  E >. } `  A ) )
65ad2antll 728 . . 3  |-  ( ( ( A  e.  V  /\  D  e.  W
)  /\  ( A  =/=  B  /\  A  =/= 
C ) )  -> 
( ( { <. A ,  D >. ,  <. B ,  E >. }  u.  {
<. C ,  F >. } ) `  A )  =  ( { <. A ,  D >. ,  <. B ,  E >. } `  A ) )
7 fvpr1g 6031 . . . . 5  |-  ( ( A  e.  V  /\  D  e.  W  /\  A  =/=  B )  -> 
( { <. A ,  D >. ,  <. B ,  E >. } `  A
)  =  D )
873expa 1188 . . . 4  |-  ( ( ( A  e.  V  /\  D  e.  W
)  /\  A  =/=  B )  ->  ( { <. A ,  D >. , 
<. B ,  E >. } `
 A )  =  D )
98adantrr 716 . . 3  |-  ( ( ( A  e.  V  /\  D  e.  W
)  /\  ( A  =/=  B  /\  A  =/= 
C ) )  -> 
( { <. A ,  D >. ,  <. B ,  E >. } `  A
)  =  D )
106, 9eqtrd 2495 . 2  |-  ( ( ( A  e.  V  /\  D  e.  W
)  /\  ( A  =/=  B  /\  A  =/= 
C ) )  -> 
( ( { <. A ,  D >. ,  <. B ,  E >. }  u.  {
<. C ,  F >. } ) `  A )  =  D )
112, 10syl5eq 2507 1  |-  ( ( ( A  e.  V  /\  D  e.  W
)  /\  ( A  =/=  B  /\  A  =/= 
C ) )  -> 
( { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. } `  A
)  =  D )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758    =/= wne 2647    u. cun 3433   {csn 3984   {cpr 3986   {ctp 3988   <.cop 3990   ` cfv 5525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-ral 2803  df-rex 2804  df-rab 2807  df-v 3078  df-sbc 3293  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-nul 3745  df-if 3899  df-sn 3985  df-pr 3987  df-tp 3989  df-op 3991  df-uni 4199  df-br 4400  df-opab 4458  df-id 4743  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-res 4959  df-iota 5488  df-fun 5527  df-fv 5533
This theorem is referenced by:  fvtp2g  6037  2wlklemA  23604  2pthon  23652
  Copyright terms: Public domain W3C validator