MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvsnun2 Structured version   Unicode version

Theorem fvsnun2 6041
Description: The value of a function with one of its ordered pairs replaced, at arguments other than the replaced one. See also fvsnun1 6040. (Contributed by NM, 23-Sep-2007.)
Hypotheses
Ref Expression
fvsnun.1  |-  A  e. 
_V
fvsnun.2  |-  B  e. 
_V
fvsnun.3  |-  G  =  ( { <. A ,  B >. }  u.  ( F  |`  ( C  \  { A } ) ) )
Assertion
Ref Expression
fvsnun2  |-  ( D  e.  ( C  \  { A } )  -> 
( G `  D
)  =  ( F `
 D ) )

Proof of Theorem fvsnun2
StepHypRef Expression
1 fvsnun.3 . . . . 5  |-  G  =  ( { <. A ,  B >. }  u.  ( F  |`  ( C  \  { A } ) ) )
21reseq1i 5209 . . . 4  |-  ( G  |`  ( C  \  { A } ) )  =  ( ( { <. A ,  B >. }  u.  ( F  |`  ( C 
\  { A }
) ) )  |`  ( C  \  { A } ) )
3 resundir 5227 . . . 4  |-  ( ( { <. A ,  B >. }  u.  ( F  |`  ( C  \  { A } ) ) )  |`  ( C  \  { A } ) )  =  ( ( { <. A ,  B >. }  |`  ( C  \  { A }
) )  u.  (
( F  |`  ( C  \  { A }
) )  |`  ( C  \  { A }
) ) )
4 disjdif 3841 . . . . . . 7  |-  ( { A }  i^i  ( C  \  { A }
) )  =  (/)
5 fvsnun.1 . . . . . . . . 9  |-  A  e. 
_V
6 fvsnun.2 . . . . . . . . 9  |-  B  e. 
_V
75, 6fnsn 5576 . . . . . . . 8  |-  { <. A ,  B >. }  Fn  { A }
8 fnresdisj 5626 . . . . . . . 8  |-  ( {
<. A ,  B >. }  Fn  { A }  ->  ( ( { A }  i^i  ( C  \  { A } ) )  =  (/)  <->  ( { <. A ,  B >. }  |`  ( C  \  { A }
) )  =  (/) ) )
97, 8ax-mp 5 . . . . . . 7  |-  ( ( { A }  i^i  ( C  \  { A } ) )  =  (/) 
<->  ( { <. A ,  B >. }  |`  ( C  \  { A }
) )  =  (/) )
104, 9mpbi 208 . . . . . 6  |-  ( {
<. A ,  B >. }  |`  ( C  \  { A } ) )  =  (/)
11 residm 5244 . . . . . 6  |-  ( ( F  |`  ( C  \  { A } ) )  |`  ( C  \  { A } ) )  =  ( F  |`  ( C  \  { A } ) )
1210, 11uneq12i 3592 . . . . 5  |-  ( ( { <. A ,  B >. }  |`  ( C  \  { A } ) )  u.  ( ( F  |`  ( C  \  { A } ) )  |`  ( C  \  { A } ) ) )  =  (
(/)  u.  ( F  |`  ( C  \  { A } ) ) )
13 uncom 3584 . . . . 5  |-  ( (/)  u.  ( F  |`  ( C  \  { A }
) ) )  =  ( ( F  |`  ( C  \  { A } ) )  u.  (/) )
14 un0 3761 . . . . 5  |-  ( ( F  |`  ( C  \  { A } ) )  u.  (/) )  =  ( F  |`  ( C  \  { A }
) )
1512, 13, 143eqtri 2433 . . . 4  |-  ( ( { <. A ,  B >. }  |`  ( C  \  { A } ) )  u.  ( ( F  |`  ( C  \  { A } ) )  |`  ( C  \  { A } ) ) )  =  ( F  |`  ( C  \  { A } ) )
162, 3, 153eqtri 2433 . . 3  |-  ( G  |`  ( C  \  { A } ) )  =  ( F  |`  ( C  \  { A }
) )
1716fveq1i 5804 . 2  |-  ( ( G  |`  ( C  \  { A } ) ) `  D )  =  ( ( F  |`  ( C  \  { A } ) ) `  D )
18 fvres 5817 . 2  |-  ( D  e.  ( C  \  { A } )  -> 
( ( G  |`  ( C  \  { A } ) ) `  D )  =  ( G `  D ) )
19 fvres 5817 . 2  |-  ( D  e.  ( C  \  { A } )  -> 
( ( F  |`  ( C  \  { A } ) ) `  D )  =  ( F `  D ) )
2017, 18, 193eqtr3a 2465 1  |-  ( D  e.  ( C  \  { A } )  -> 
( G `  D
)  =  ( F `
 D ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    = wceq 1403    e. wcel 1840   _Vcvv 3056    \ cdif 3408    u. cun 3409    i^i cin 3410   (/)c0 3735   {csn 3969   <.cop 3975    |` cres 4942    Fn wfn 5518   ` cfv 5523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1637  ax-4 1650  ax-5 1723  ax-6 1769  ax-7 1812  ax-9 1844  ax-10 1859  ax-11 1864  ax-12 1876  ax-13 2024  ax-ext 2378  ax-sep 4514  ax-nul 4522  ax-pr 4627
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 974  df-tru 1406  df-ex 1632  df-nf 1636  df-sb 1762  df-eu 2240  df-mo 2241  df-clab 2386  df-cleq 2392  df-clel 2395  df-nfc 2550  df-ne 2598  df-ral 2756  df-rex 2757  df-rab 2760  df-v 3058  df-dif 3414  df-un 3416  df-in 3418  df-ss 3425  df-nul 3736  df-if 3883  df-sn 3970  df-pr 3972  df-op 3976  df-uni 4189  df-br 4393  df-opab 4451  df-id 4735  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-res 4952  df-iota 5487  df-fun 5525  df-fn 5526  df-fv 5531
This theorem is referenced by:  facnn  12307
  Copyright terms: Public domain W3C validator