MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvsnun1 Structured version   Unicode version

Theorem fvsnun1 6085
Description: The value of a function with one of its ordered pairs replaced, at the replaced ordered pair. See also fvsnun2 6086. (Contributed by NM, 23-Sep-2007.)
Hypotheses
Ref Expression
fvsnun.1  |-  A  e. 
_V
fvsnun.2  |-  B  e. 
_V
fvsnun.3  |-  G  =  ( { <. A ,  B >. }  u.  ( F  |`  ( C  \  { A } ) ) )
Assertion
Ref Expression
fvsnun1  |-  ( G `
 A )  =  B

Proof of Theorem fvsnun1
StepHypRef Expression
1 fvsnun.3 . . . . 5  |-  G  =  ( { <. A ,  B >. }  u.  ( F  |`  ( C  \  { A } ) ) )
21reseq1i 5089 . . . 4  |-  ( G  |`  { A } )  =  ( ( {
<. A ,  B >. }  u.  ( F  |`  ( C  \  { A } ) ) )  |`  { A } )
3 resundir 5107 . . . . 5  |-  ( ( { <. A ,  B >. }  u.  ( F  |`  ( C  \  { A } ) ) )  |`  { A } )  =  ( ( {
<. A ,  B >. }  |`  { A } )  u.  ( ( F  |`  ( C  \  { A } ) )  |`  { A } ) )
4 incom 3631 . . . . . . . . 9  |-  ( ( C  \  { A } )  i^i  { A } )  =  ( { A }  i^i  ( C  \  { A } ) )
5 disjdif 3843 . . . . . . . . 9  |-  ( { A }  i^i  ( C  \  { A }
) )  =  (/)
64, 5eqtri 2431 . . . . . . . 8  |-  ( ( C  \  { A } )  i^i  { A } )  =  (/)
7 resdisj 5253 . . . . . . . 8  |-  ( ( ( C  \  { A } )  i^i  { A } )  =  (/)  ->  ( ( F  |`  ( C  \  { A } ) )  |`  { A } )  =  (/) )
86, 7ax-mp 5 . . . . . . 7  |-  ( ( F  |`  ( C  \  { A } ) )  |`  { A } )  =  (/)
98uneq2i 3593 . . . . . 6  |-  ( ( { <. A ,  B >. }  |`  { A } )  u.  (
( F  |`  ( C  \  { A }
) )  |`  { A } ) )  =  ( ( { <. A ,  B >. }  |`  { A } )  u.  (/) )
10 un0 3763 . . . . . 6  |-  ( ( { <. A ,  B >. }  |`  { A } )  u.  (/) )  =  ( { <. A ,  B >. }  |`  { A } )
119, 10eqtri 2431 . . . . 5  |-  ( ( { <. A ,  B >. }  |`  { A } )  u.  (
( F  |`  ( C  \  { A }
) )  |`  { A } ) )  =  ( { <. A ,  B >. }  |`  { A } )
123, 11eqtri 2431 . . . 4  |-  ( ( { <. A ,  B >. }  u.  ( F  |`  ( C  \  { A } ) ) )  |`  { A } )  =  ( { <. A ,  B >. }  |`  { A } )
132, 12eqtri 2431 . . 3  |-  ( G  |`  { A } )  =  ( { <. A ,  B >. }  |`  { A } )
1413fveq1i 5849 . 2  |-  ( ( G  |`  { A } ) `  A
)  =  ( ( { <. A ,  B >. }  |`  { A } ) `  A
)
15 fvsnun.1 . . . 4  |-  A  e. 
_V
1615snid 3999 . . 3  |-  A  e. 
{ A }
17 fvres 5862 . . 3  |-  ( A  e.  { A }  ->  ( ( G  |`  { A } ) `  A )  =  ( G `  A ) )
1816, 17ax-mp 5 . 2  |-  ( ( G  |`  { A } ) `  A
)  =  ( G `
 A )
19 fvres 5862 . . . 4  |-  ( A  e.  { A }  ->  ( ( { <. A ,  B >. }  |`  { A } ) `  A
)  =  ( {
<. A ,  B >. } `
 A ) )
2016, 19ax-mp 5 . . 3  |-  ( ( { <. A ,  B >. }  |`  { A } ) `  A
)  =  ( {
<. A ,  B >. } `
 A )
21 fvsnun.2 . . . 4  |-  B  e. 
_V
2215, 21fvsn 6083 . . 3  |-  ( {
<. A ,  B >. } `
 A )  =  B
2320, 22eqtri 2431 . 2  |-  ( ( { <. A ,  B >. }  |`  { A } ) `  A
)  =  B
2414, 18, 233eqtr3i 2439 1  |-  ( G `
 A )  =  B
Colors of variables: wff setvar class
Syntax hints:    = wceq 1405    e. wcel 1842   _Vcvv 3058    \ cdif 3410    u. cun 3411    i^i cin 3412   (/)c0 3737   {csn 3971   <.cop 3977    |` cres 4824   ` cfv 5568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4516  ax-nul 4524  ax-pr 4629
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-rab 2762  df-v 3060  df-sbc 3277  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-nul 3738  df-if 3885  df-sn 3972  df-pr 3974  df-op 3978  df-uni 4191  df-br 4395  df-opab 4453  df-id 4737  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-res 4834  df-iota 5532  df-fun 5570  df-fv 5576
This theorem is referenced by:  fac0  12398  ruclem4  14174
  Copyright terms: Public domain W3C validator