Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvray Structured version   Unicode version

Theorem fvray 29686
Description: Calculate the value of the Ray function. (Contributed by Scott Fenton, 21-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
fvray  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  P  =/=  A ) )  -> 
( PRay A )  =  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. } )
Distinct variable groups:    x, A    x, N    x, P

Proof of Theorem fvray
Dummy variables  a  n  p  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 6297 . 2  |-  ( PRay A )  =  (Ray
`  <. P ,  A >. )
2 eqid 2467 . . . . 5  |-  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. }  =  {
x  e.  ( EE
`  N )  |  POutsideOf <. A ,  x >. }
3 fveq2 5871 . . . . . . . . 9  |-  ( n  =  N  ->  ( EE `  n )  =  ( EE `  N
) )
43eleq2d 2537 . . . . . . . 8  |-  ( n  =  N  ->  ( P  e.  ( EE `  n )  <->  P  e.  ( EE `  N ) ) )
53eleq2d 2537 . . . . . . . 8  |-  ( n  =  N  ->  ( A  e.  ( EE `  n )  <->  A  e.  ( EE `  N ) ) )
64, 53anbi12d 1300 . . . . . . 7  |-  ( n  =  N  ->  (
( P  e.  ( EE `  n )  /\  A  e.  ( EE `  n )  /\  P  =/=  A
)  <->  ( P  e.  ( EE `  N
)  /\  A  e.  ( EE `  N )  /\  P  =/=  A
) ) )
7 rabeq 3112 . . . . . . . . 9  |-  ( ( EE `  n )  =  ( EE `  N )  ->  { x  e.  ( EE `  n
)  |  POutsideOf <. A ,  x >. }  =  {
x  e.  ( EE
`  N )  |  POutsideOf <. A ,  x >. } )
83, 7syl 16 . . . . . . . 8  |-  ( n  =  N  ->  { x  e.  ( EE `  n
)  |  POutsideOf <. A ,  x >. }  =  {
x  e.  ( EE
`  N )  |  POutsideOf <. A ,  x >. } )
98eqeq2d 2481 . . . . . . 7  |-  ( n  =  N  ->  ( { x  e.  ( EE `  N )  |  POutsideOf <. A ,  x >. }  =  { x  e.  ( EE `  n
)  |  POutsideOf <. A ,  x >. }  <->  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. }  =  {
x  e.  ( EE
`  N )  |  POutsideOf <. A ,  x >. } ) )
106, 9anbi12d 710 . . . . . 6  |-  ( n  =  N  ->  (
( ( P  e.  ( EE `  n
)  /\  A  e.  ( EE `  n )  /\  P  =/=  A
)  /\  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. }  =  {
x  e.  ( EE
`  n )  |  POutsideOf <. A ,  x >. } )  <->  ( ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  P  =/=  A )  /\  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. }  =  {
x  e.  ( EE
`  N )  |  POutsideOf <. A ,  x >. } ) ) )
1110rspcev 3219 . . . . 5  |-  ( ( N  e.  NN  /\  ( ( P  e.  ( EE `  N
)  /\  A  e.  ( EE `  N )  /\  P  =/=  A
)  /\  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. }  =  {
x  e.  ( EE
`  N )  |  POutsideOf <. A ,  x >. } ) )  ->  E. n  e.  NN  ( ( P  e.  ( EE `  n
)  /\  A  e.  ( EE `  n )  /\  P  =/=  A
)  /\  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. }  =  {
x  e.  ( EE
`  n )  |  POutsideOf <. A ,  x >. } ) )
122, 11mpanr2 684 . . . 4  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  P  =/=  A ) )  ->  E. n  e.  NN  ( ( P  e.  ( EE `  n
)  /\  A  e.  ( EE `  n )  /\  P  =/=  A
)  /\  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. }  =  {
x  e.  ( EE
`  n )  |  POutsideOf <. A ,  x >. } ) )
13 simpr1 1002 . . . . 5  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  P  =/=  A ) )  ->  P  e.  ( EE `  N ) )
14 simpr2 1003 . . . . 5  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  P  =/=  A ) )  ->  A  e.  ( EE `  N ) )
15 fvex 5881 . . . . . . 7  |-  ( EE
`  N )  e. 
_V
1615rabex 4603 . . . . . 6  |-  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. }  e.  _V
17 eleq1 2539 . . . . . . . . . 10  |-  ( p  =  P  ->  (
p  e.  ( EE
`  n )  <->  P  e.  ( EE `  n ) ) )
18 neeq1 2748 . . . . . . . . . 10  |-  ( p  =  P  ->  (
p  =/=  a  <->  P  =/=  a ) )
1917, 183anbi13d 1301 . . . . . . . . 9  |-  ( p  =  P  ->  (
( p  e.  ( EE `  n )  /\  a  e.  ( EE `  n )  /\  p  =/=  a
)  <->  ( P  e.  ( EE `  n
)  /\  a  e.  ( EE `  n )  /\  P  =/=  a
) ) )
20 breq1 4455 . . . . . . . . . . 11  |-  ( p  =  P  ->  (
pOutsideOf <. a ,  x >.  <-> 
POutsideOf <. a ,  x >. ) )
2120rabbidv 3110 . . . . . . . . . 10  |-  ( p  =  P  ->  { x  e.  ( EE `  n
)  |  pOutsideOf <. a ,  x >. }  =  {
x  e.  ( EE
`  n )  |  POutsideOf <. a ,  x >. } )
2221eqeq2d 2481 . . . . . . . . 9  |-  ( p  =  P  ->  (
r  =  { x  e.  ( EE `  n
)  |  pOutsideOf <. a ,  x >. }  <->  r  =  { x  e.  ( EE `  n )  |  POutsideOf <. a ,  x >. } ) )
2319, 22anbi12d 710 . . . . . . . 8  |-  ( p  =  P  ->  (
( ( p  e.  ( EE `  n
)  /\  a  e.  ( EE `  n )  /\  p  =/=  a
)  /\  r  =  { x  e.  ( EE `  n )  |  pOutsideOf <. a ,  x >. } )  <->  ( ( P  e.  ( EE `  n )  /\  a  e.  ( EE `  n
)  /\  P  =/=  a )  /\  r  =  { x  e.  ( EE `  n )  |  POutsideOf <. a ,  x >. } ) ) )
2423rexbidv 2978 . . . . . . 7  |-  ( p  =  P  ->  ( E. n  e.  NN  ( ( p  e.  ( EE `  n
)  /\  a  e.  ( EE `  n )  /\  p  =/=  a
)  /\  r  =  { x  e.  ( EE `  n )  |  pOutsideOf <. a ,  x >. } )  <->  E. n  e.  NN  ( ( P  e.  ( EE `  n )  /\  a  e.  ( EE `  n
)  /\  P  =/=  a )  /\  r  =  { x  e.  ( EE `  n )  |  POutsideOf <. a ,  x >. } ) ) )
25 eleq1 2539 . . . . . . . . . 10  |-  ( a  =  A  ->  (
a  e.  ( EE
`  n )  <->  A  e.  ( EE `  n ) ) )
26 neeq2 2750 . . . . . . . . . 10  |-  ( a  =  A  ->  ( P  =/=  a  <->  P  =/=  A ) )
2725, 263anbi23d 1302 . . . . . . . . 9  |-  ( a  =  A  ->  (
( P  e.  ( EE `  n )  /\  a  e.  ( EE `  n )  /\  P  =/=  a
)  <->  ( P  e.  ( EE `  n
)  /\  A  e.  ( EE `  n )  /\  P  =/=  A
) ) )
28 opeq1 4218 . . . . . . . . . . . 12  |-  ( a  =  A  ->  <. a ,  x >.  =  <. A ,  x >. )
2928breq2d 4464 . . . . . . . . . . 11  |-  ( a  =  A  ->  ( POutsideOf
<. a ,  x >.  <->  POutsideOf <. A ,  x >. ) )
3029rabbidv 3110 . . . . . . . . . 10  |-  ( a  =  A  ->  { x  e.  ( EE `  n
)  |  POutsideOf <. a ,  x >. }  =  {
x  e.  ( EE
`  n )  |  POutsideOf <. A ,  x >. } )
3130eqeq2d 2481 . . . . . . . . 9  |-  ( a  =  A  ->  (
r  =  { x  e.  ( EE `  n
)  |  POutsideOf <. a ,  x >. }  <->  r  =  { x  e.  ( EE `  n )  |  POutsideOf <. A ,  x >. } ) )
3227, 31anbi12d 710 . . . . . . . 8  |-  ( a  =  A  ->  (
( ( P  e.  ( EE `  n
)  /\  a  e.  ( EE `  n )  /\  P  =/=  a
)  /\  r  =  { x  e.  ( EE `  n )  |  POutsideOf <. a ,  x >. } )  <->  ( ( P  e.  ( EE `  n )  /\  A  e.  ( EE `  n
)  /\  P  =/=  A )  /\  r  =  { x  e.  ( EE `  n )  |  POutsideOf <. A ,  x >. } ) ) )
3332rexbidv 2978 . . . . . . 7  |-  ( a  =  A  ->  ( E. n  e.  NN  ( ( P  e.  ( EE `  n
)  /\  a  e.  ( EE `  n )  /\  P  =/=  a
)  /\  r  =  { x  e.  ( EE `  n )  |  POutsideOf <. a ,  x >. } )  <->  E. n  e.  NN  ( ( P  e.  ( EE `  n )  /\  A  e.  ( EE `  n
)  /\  P  =/=  A )  /\  r  =  { x  e.  ( EE `  n )  |  POutsideOf <. A ,  x >. } ) ) )
34 eqeq1 2471 . . . . . . . . 9  |-  ( r  =  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. }  ->  (
r  =  { x  e.  ( EE `  n
)  |  POutsideOf <. A ,  x >. }  <->  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. }  =  {
x  e.  ( EE
`  n )  |  POutsideOf <. A ,  x >. } ) )
3534anbi2d 703 . . . . . . . 8  |-  ( r  =  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. }  ->  (
( ( P  e.  ( EE `  n
)  /\  A  e.  ( EE `  n )  /\  P  =/=  A
)  /\  r  =  { x  e.  ( EE `  n )  |  POutsideOf <. A ,  x >. } )  <->  ( ( P  e.  ( EE `  n )  /\  A  e.  ( EE `  n
)  /\  P  =/=  A )  /\  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. }  =  {
x  e.  ( EE
`  n )  |  POutsideOf <. A ,  x >. } ) ) )
3635rexbidv 2978 . . . . . . 7  |-  ( r  =  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. }  ->  ( E. n  e.  NN  ( ( P  e.  ( EE `  n
)  /\  A  e.  ( EE `  n )  /\  P  =/=  A
)  /\  r  =  { x  e.  ( EE `  n )  |  POutsideOf <. A ,  x >. } )  <->  E. n  e.  NN  ( ( P  e.  ( EE `  n )  /\  A  e.  ( EE `  n
)  /\  P  =/=  A )  /\  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. }  =  {
x  e.  ( EE
`  n )  |  POutsideOf <. A ,  x >. } ) ) )
3724, 33, 36eloprabg 6384 . . . . . 6  |-  ( ( P  e.  ( EE
`  N )  /\  A  e.  ( EE `  N )  /\  {
x  e.  ( EE
`  N )  |  POutsideOf <. A ,  x >. }  e.  _V )  ->  ( <. <. P ,  A >. ,  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. } >.  e.  { <. <. p ,  a
>. ,  r >.  |  E. n  e.  NN  ( ( p  e.  ( EE `  n
)  /\  a  e.  ( EE `  n )  /\  p  =/=  a
)  /\  r  =  { x  e.  ( EE `  n )  |  pOutsideOf <. a ,  x >. } ) }  <->  E. n  e.  NN  ( ( P  e.  ( EE `  n )  /\  A  e.  ( EE `  n
)  /\  P  =/=  A )  /\  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. }  =  {
x  e.  ( EE
`  n )  |  POutsideOf <. A ,  x >. } ) ) )
3816, 37mp3an3 1313 . . . . 5  |-  ( ( P  e.  ( EE
`  N )  /\  A  e.  ( EE `  N ) )  -> 
( <. <. P ,  A >. ,  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. } >.  e.  { <. <. p ,  a
>. ,  r >.  |  E. n  e.  NN  ( ( p  e.  ( EE `  n
)  /\  a  e.  ( EE `  n )  /\  p  =/=  a
)  /\  r  =  { x  e.  ( EE `  n )  |  pOutsideOf <. a ,  x >. } ) }  <->  E. n  e.  NN  ( ( P  e.  ( EE `  n )  /\  A  e.  ( EE `  n
)  /\  P  =/=  A )  /\  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. }  =  {
x  e.  ( EE
`  n )  |  POutsideOf <. A ,  x >. } ) ) )
3913, 14, 38syl2anc 661 . . . 4  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  P  =/=  A ) )  -> 
( <. <. P ,  A >. ,  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. } >.  e.  { <. <. p ,  a
>. ,  r >.  |  E. n  e.  NN  ( ( p  e.  ( EE `  n
)  /\  a  e.  ( EE `  n )  /\  p  =/=  a
)  /\  r  =  { x  e.  ( EE `  n )  |  pOutsideOf <. a ,  x >. } ) }  <->  E. n  e.  NN  ( ( P  e.  ( EE `  n )  /\  A  e.  ( EE `  n
)  /\  P  =/=  A )  /\  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. }  =  {
x  e.  ( EE
`  n )  |  POutsideOf <. A ,  x >. } ) ) )
4012, 39mpbird 232 . . 3  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  P  =/=  A ) )  ->  <. <. P ,  A >. ,  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. } >.  e.  { <. <. p ,  a
>. ,  r >.  |  E. n  e.  NN  ( ( p  e.  ( EE `  n
)  /\  a  e.  ( EE `  n )  /\  p  =/=  a
)  /\  r  =  { x  e.  ( EE `  n )  |  pOutsideOf <. a ,  x >. } ) } )
41 df-br 4453 . . . . 5  |-  ( <. P ,  A >.Ray { x  e.  ( EE
`  N )  |  POutsideOf <. A ,  x >. }  <->  <. <. P ,  A >. ,  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. } >.  e. Ray )
42 df-ray 29683 . . . . . 6  |- Ray  =  { <. <. p ,  a
>. ,  r >.  |  E. n  e.  NN  ( ( p  e.  ( EE `  n
)  /\  a  e.  ( EE `  n )  /\  p  =/=  a
)  /\  r  =  { x  e.  ( EE `  n )  |  pOutsideOf <. a ,  x >. } ) }
4342eleq2i 2545 . . . . 5  |-  ( <. <. P ,  A >. ,  { x  e.  ( EE `  N )  |  POutsideOf <. A ,  x >. } >.  e. Ray  <->  <. <. P ,  A >. ,  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. } >.  e.  { <. <. p ,  a
>. ,  r >.  |  E. n  e.  NN  ( ( p  e.  ( EE `  n
)  /\  a  e.  ( EE `  n )  /\  p  =/=  a
)  /\  r  =  { x  e.  ( EE `  n )  |  pOutsideOf <. a ,  x >. } ) } )
4441, 43bitri 249 . . . 4  |-  ( <. P ,  A >.Ray { x  e.  ( EE
`  N )  |  POutsideOf <. A ,  x >. }  <->  <. <. P ,  A >. ,  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. } >.  e.  { <. <. p ,  a
>. ,  r >.  |  E. n  e.  NN  ( ( p  e.  ( EE `  n
)  /\  a  e.  ( EE `  n )  /\  p  =/=  a
)  /\  r  =  { x  e.  ( EE `  n )  |  pOutsideOf <. a ,  x >. } ) } )
45 funray 29685 . . . . 5  |-  Fun Ray
46 funbrfv 5911 . . . . 5  |-  ( Fun Ray  ->  ( <. P ,  A >.Ray { x  e.  ( EE `  N )  |  POutsideOf <. A ,  x >. }  ->  (Ray `  <. P ,  A >. )  =  { x  e.  ( EE `  N )  |  POutsideOf <. A ,  x >. } ) )
4745, 46ax-mp 5 . . . 4  |-  ( <. P ,  A >.Ray { x  e.  ( EE
`  N )  |  POutsideOf <. A ,  x >. }  ->  (Ray `  <. P ,  A >. )  =  { x  e.  ( EE `  N )  |  POutsideOf <. A ,  x >. } )
4844, 47sylbir 213 . . 3  |-  ( <. <. P ,  A >. ,  { x  e.  ( EE `  N )  |  POutsideOf <. A ,  x >. } >.  e.  { <. <.
p ,  a >. ,  r >.  |  E. n  e.  NN  (
( p  e.  ( EE `  n )  /\  a  e.  ( EE `  n )  /\  p  =/=  a
)  /\  r  =  { x  e.  ( EE `  n )  |  pOutsideOf <. a ,  x >. } ) }  ->  (Ray
`  <. P ,  A >. )  =  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. } )
4940, 48syl 16 . 2  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  P  =/=  A ) )  -> 
(Ray `  <. P ,  A >. )  =  {
x  e.  ( EE
`  N )  |  POutsideOf <. A ,  x >. } )
501, 49syl5eq 2520 1  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  P  =/=  A ) )  -> 
( PRay A )  =  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   E.wrex 2818   {crab 2821   _Vcvv 3118   <.cop 4038   class class class wbr 4452   Fun wfun 5587   ` cfv 5593  (class class class)co 6294   {coprab 6295   NNcn 10546   EEcee 23982  OutsideOfcoutsideof 29664  Raycray 29680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6586  ax-cnex 9558  ax-resscn 9559  ax-1cn 9560  ax-icn 9561  ax-addcl 9562  ax-addrcl 9563  ax-mulcl 9564  ax-mulrcl 9565  ax-mulcom 9566  ax-addass 9567  ax-mulass 9568  ax-distr 9569  ax-i2m1 9570  ax-1ne0 9571  ax-1rid 9572  ax-rnegex 9573  ax-rrecex 9574  ax-cnre 9575  ax-pre-lttri 9576  ax-pre-lttrn 9577  ax-pre-ltadd 9578  ax-pre-mulgt0 9579
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4251  df-iun 4332  df-br 4453  df-opab 4511  df-mpt 4512  df-tr 4546  df-eprel 4796  df-id 4800  df-po 4805  df-so 4806  df-fr 4843  df-we 4845  df-ord 4886  df-on 4887  df-lim 4888  df-suc 4889  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601  df-riota 6255  df-ov 6297  df-oprab 6298  df-mpt2 6299  df-om 6695  df-1st 6794  df-2nd 6795  df-recs 7052  df-rdg 7086  df-er 7321  df-map 7432  df-en 7527  df-dom 7528  df-sdom 7529  df-pnf 9640  df-mnf 9641  df-xr 9642  df-ltxr 9643  df-le 9644  df-sub 9817  df-neg 9818  df-nn 10547  df-z 10875  df-uz 11093  df-fz 11683  df-ee 23985  df-ray 29683
This theorem is referenced by:  lineunray  29692
  Copyright terms: Public domain W3C validator