MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvpr2 Structured version   Visualization version   Unicode version

Theorem fvpr2 6124
Description: The value of a function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.)
Hypotheses
Ref Expression
fvpr2.1  |-  B  e. 
_V
fvpr2.2  |-  D  e. 
_V
Assertion
Ref Expression
fvpr2  |-  ( A  =/=  B  ->  ( { <. A ,  C >. ,  <. B ,  D >. } `  B )  =  D )

Proof of Theorem fvpr2
StepHypRef Expression
1 prcom 4041 . . 3  |-  { <. A ,  C >. ,  <. B ,  D >. }  =  { <. B ,  D >. ,  <. A ,  C >. }
21fveq1i 5880 . 2  |-  ( {
<. A ,  C >. , 
<. B ,  D >. } `
 B )  =  ( { <. B ,  D >. ,  <. A ,  C >. } `  B
)
3 necom 2696 . . 3  |-  ( A  =/=  B  <->  B  =/=  A )
4 fvpr2.1 . . . 4  |-  B  e. 
_V
5 fvpr2.2 . . . 4  |-  D  e. 
_V
64, 5fvpr1 6123 . . 3  |-  ( B  =/=  A  ->  ( { <. B ,  D >. ,  <. A ,  C >. } `  B )  =  D )
73, 6sylbi 200 . 2  |-  ( A  =/=  B  ->  ( { <. B ,  D >. ,  <. A ,  C >. } `  B )  =  D )
82, 7syl5eq 2517 1  |-  ( A  =/=  B  ->  ( { <. A ,  C >. ,  <. B ,  D >. } `  B )  =  D )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1452    e. wcel 1904    =/= wne 2641   _Vcvv 3031   {cpr 3961   <.cop 3965   ` cfv 5589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-sbc 3256  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-br 4396  df-opab 4455  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-res 4851  df-iota 5553  df-fun 5591  df-fv 5597
This theorem is referenced by:  fnprb  6139  m2detleiblem3  19731  m2detleiblem4  19732  axlowdimlem6  25056  wlkntrllem2  25369  wlkntrllem3  25370  2wlklem1  25406  ex-fv  25972  fprb  30484  nnsum3primes4  39028  nnsum3primesgbe  39032  umgr2v2evd2  39750  zlmodzxzldeplem3  40803
  Copyright terms: Public domain W3C validator