MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvpr1g Structured version   Visualization version   Unicode version

Theorem fvpr1g 6132
Description: The value of a function with a domain of (at most) two elements. (Contributed by Alexander van der Vekens, 3-Dec-2017.)
Assertion
Ref Expression
fvpr1g  |-  ( ( A  e.  V  /\  C  e.  W  /\  A  =/=  B )  -> 
( { <. A ,  C >. ,  <. B ,  D >. } `  A
)  =  C )

Proof of Theorem fvpr1g
StepHypRef Expression
1 df-pr 3982 . . . . 5  |-  { <. A ,  C >. ,  <. B ,  D >. }  =  ( { <. A ,  C >. }  u.  { <. B ,  D >. } )
21fveq1i 5888 . . . 4  |-  ( {
<. A ,  C >. , 
<. B ,  D >. } `
 A )  =  ( ( { <. A ,  C >. }  u.  {
<. B ,  D >. } ) `  A )
3 necom 2688 . . . . 5  |-  ( A  =/=  B  <->  B  =/=  A )
4 fvunsn 6119 . . . . 5  |-  ( B  =/=  A  ->  (
( { <. A ,  C >. }  u.  { <. B ,  D >. } ) `  A )  =  ( { <. A ,  C >. } `  A ) )
53, 4sylbi 200 . . . 4  |-  ( A  =/=  B  ->  (
( { <. A ,  C >. }  u.  { <. B ,  D >. } ) `  A )  =  ( { <. A ,  C >. } `  A ) )
62, 5syl5eq 2507 . . 3  |-  ( A  =/=  B  ->  ( { <. A ,  C >. ,  <. B ,  D >. } `  A )  =  ( { <. A ,  C >. } `  A ) )
763ad2ant3 1037 . 2  |-  ( ( A  e.  V  /\  C  e.  W  /\  A  =/=  B )  -> 
( { <. A ,  C >. ,  <. B ,  D >. } `  A
)  =  ( {
<. A ,  C >. } `
 A ) )
8 fvsng 6121 . . 3  |-  ( ( A  e.  V  /\  C  e.  W )  ->  ( { <. A ,  C >. } `  A
)  =  C )
983adant3 1034 . 2  |-  ( ( A  e.  V  /\  C  e.  W  /\  A  =/=  B )  -> 
( { <. A ,  C >. } `  A
)  =  C )
107, 9eqtrd 2495 1  |-  ( ( A  e.  V  /\  C  e.  W  /\  A  =/=  B )  -> 
( { <. A ,  C >. ,  <. B ,  D >. } `  A
)  =  C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 991    = wceq 1454    e. wcel 1897    =/= wne 2632    u. cun 3413   {csn 3979   {cpr 3981   <.cop 3985   ` cfv 5600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1679  ax-4 1692  ax-5 1768  ax-6 1815  ax-7 1861  ax-8 1899  ax-9 1906  ax-10 1925  ax-11 1930  ax-12 1943  ax-13 2101  ax-ext 2441  ax-sep 4538  ax-nul 4547  ax-pow 4594  ax-pr 4652
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3an 993  df-tru 1457  df-ex 1674  df-nf 1678  df-sb 1808  df-eu 2313  df-mo 2314  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2591  df-ne 2634  df-ral 2753  df-rex 2754  df-rab 2757  df-v 3058  df-sbc 3279  df-dif 3418  df-un 3420  df-in 3422  df-ss 3429  df-nul 3743  df-if 3893  df-sn 3980  df-pr 3982  df-op 3986  df-uni 4212  df-br 4416  df-opab 4475  df-id 4767  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-res 4864  df-iota 5564  df-fun 5602  df-fv 5608
This theorem is referenced by:  fvtp1g  6137  f1prex  6206  wrdlen2i  13066  constr1trl  25366  1pthon  25369  constr3lem4  25423  fpropnf1  39077  zlmodzxzscm  40410  zlmodzxzadd  40411  lincvalpr  40483  ldepspr  40538
  Copyright terms: Public domain W3C validator