MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvopab6 Structured version   Unicode version

Theorem fvopab6 5794
Description: Value of a function given by ordered-pair class abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
fvopab6.1  |-  F  =  { <. x ,  y
>.  |  ( ph  /\  y  =  B ) }
fvopab6.2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
fvopab6.3  |-  ( x  =  A  ->  B  =  C )
Assertion
Ref Expression
fvopab6  |-  ( ( A  e.  D  /\  C  e.  R  /\  ps )  ->  ( F `
 A )  =  C )
Distinct variable groups:    x, A, y    ps, x, y    y, B    x, C, y
Allowed substitution hints:    ph( x, y)    B( x)    D( x, y)    R( x, y)    F( x, y)

Proof of Theorem fvopab6
StepHypRef Expression
1 elex 2979 . . 3  |-  ( A  e.  D  ->  A  e.  _V )
2 fvopab6.2 . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
3 fvopab6.3 . . . . . 6  |-  ( x  =  A  ->  B  =  C )
43eqeq2d 2452 . . . . 5  |-  ( x  =  A  ->  (
y  =  B  <->  y  =  C ) )
52, 4anbi12d 710 . . . 4  |-  ( x  =  A  ->  (
( ph  /\  y  =  B )  <->  ( ps  /\  y  =  C ) ) )
6 iba 503 . . . . 5  |-  ( y  =  C  ->  ( ps 
<->  ( ps  /\  y  =  C ) ) )
76bicomd 201 . . . 4  |-  ( y  =  C  ->  (
( ps  /\  y  =  C )  <->  ps )
)
8 moeq 3133 . . . . . 6  |-  E* y 
y  =  B
98moani 2326 . . . . 5  |-  E* y
( ph  /\  y  =  B )
109a1i 11 . . . 4  |-  ( x  e.  _V  ->  E* y ( ph  /\  y  =  B )
)
11 fvopab6.1 . . . . 5  |-  F  =  { <. x ,  y
>.  |  ( ph  /\  y  =  B ) }
12 vex 2973 . . . . . . 7  |-  x  e. 
_V
1312biantrur 506 . . . . . 6  |-  ( (
ph  /\  y  =  B )  <->  ( x  e.  _V  /\  ( ph  /\  y  =  B ) ) )
1413opabbii 4354 . . . . 5  |-  { <. x ,  y >.  |  (
ph  /\  y  =  B ) }  =  { <. x ,  y
>.  |  ( x  e.  _V  /\  ( ph  /\  y  =  B ) ) }
1511, 14eqtri 2461 . . . 4  |-  F  =  { <. x ,  y
>.  |  ( x  e.  _V  /\  ( ph  /\  y  =  B ) ) }
165, 7, 10, 15fvopab3ig 5769 . . 3  |-  ( ( A  e.  _V  /\  C  e.  R )  ->  ( ps  ->  ( F `  A )  =  C ) )
171, 16sylan 471 . 2  |-  ( ( A  e.  D  /\  C  e.  R )  ->  ( ps  ->  ( F `  A )  =  C ) )
18173impia 1184 1  |-  ( ( A  e.  D  /\  C  e.  R  /\  ps )  ->  ( F `
 A )  =  C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   E*wmo 2254   _Vcvv 2970   {copab 4347   ` cfv 5416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-sep 4411  ax-nul 4419  ax-pr 4529
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-rab 2722  df-v 2972  df-sbc 3185  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-nul 3636  df-if 3790  df-sn 3876  df-pr 3878  df-op 3882  df-uni 4090  df-br 4291  df-opab 4349  df-id 4634  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-iota 5379  df-fun 5418  df-fv 5424
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator