Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvopab4ndm Structured version   Unicode version

Theorem fvopab4ndm 5959
 Description: Value of a function given by an ordered-pair class abstraction, outside of its domain. (Contributed by NM, 28-Mar-2008.)
Hypothesis
Ref Expression
fvopab4ndm.1
Assertion
Ref Expression
fvopab4ndm
Distinct variable group:   ,,
Allowed substitution hints:   (,)   (,)   (,)

Proof of Theorem fvopab4ndm
StepHypRef Expression
1 fvopab4ndm.1 . . . . . 6
21dmeqi 5190 . . . . 5
3 dmopabss 5200 . . . . 5
42, 3eqsstri 3516 . . . 4
54sseli 3482 . . 3
65con3i 135 . 2
7 ndmfv 5876 . 2
86, 7syl 16 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4   wa 369   wceq 1381   wcel 1802  c0 3767  copab 4490   cdm 4985  cfv 5574 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-ral 2796  df-rex 2797  df-rab 2800  df-v 3095  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-nul 3768  df-if 3923  df-sn 4011  df-pr 4013  df-op 4017  df-uni 4231  df-br 4434  df-opab 4492  df-dm 4995  df-iota 5537  df-fv 5582 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator