MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvopab3ig Unicode version

Theorem fvopab3ig 5451
Description: Value of a function given by ordered-pair class abstraction. (Contributed by NM, 23-Oct-1999.)
Hypotheses
Ref Expression
fvopab3ig.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
fvopab3ig.2  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
fvopab3ig.3  |-  ( x  e.  C  ->  E* y ph )
fvopab3ig.4  |-  F  =  { <. x ,  y
>.  |  ( x  e.  C  /\  ph ) }
Assertion
Ref Expression
fvopab3ig  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( ch  ->  ( F `  A )  =  B ) )
Distinct variable groups:    x, y, A    x, B, y    x, C, y    ch, x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)    D( x, y)    F( x, y)

Proof of Theorem fvopab3ig
StepHypRef Expression
1 eleq1 2313 . . . . . . . 8  |-  ( x  =  A  ->  (
x  e.  C  <->  A  e.  C ) )
2 fvopab3ig.1 . . . . . . . 8  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
31, 2anbi12d 694 . . . . . . 7  |-  ( x  =  A  ->  (
( x  e.  C  /\  ph )  <->  ( A  e.  C  /\  ps )
) )
4 fvopab3ig.2 . . . . . . . 8  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
54anbi2d 687 . . . . . . 7  |-  ( y  =  B  ->  (
( A  e.  C  /\  ps )  <->  ( A  e.  C  /\  ch )
) )
63, 5opelopabg 4176 . . . . . 6  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( <. A ,  B >.  e.  { <. x ,  y >.  |  ( x  e.  C  /\  ph ) }  <->  ( A  e.  C  /\  ch )
) )
76biimpar 473 . . . . 5  |-  ( ( ( A  e.  C  /\  B  e.  D
)  /\  ( A  e.  C  /\  ch )
)  ->  <. A ,  B >.  e.  { <. x ,  y >.  |  ( x  e.  C  /\  ph ) } )
87exp43 598 . . . 4  |-  ( A  e.  C  ->  ( B  e.  D  ->  ( A  e.  C  -> 
( ch  ->  <. A ,  B >.  e.  { <. x ,  y >.  |  ( x  e.  C  /\  ph ) } ) ) ) )
98pm2.43a 47 . . 3  |-  ( A  e.  C  ->  ( B  e.  D  ->  ( ch  ->  <. A ,  B >.  e.  { <. x ,  y >.  |  ( x  e.  C  /\  ph ) } ) ) )
109imp 420 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( ch  ->  <. A ,  B >.  e.  { <. x ,  y >.  |  ( x  e.  C  /\  ph ) } ) )
11 fvopab3ig.4 . . . 4  |-  F  =  { <. x ,  y
>.  |  ( x  e.  C  /\  ph ) }
1211fveq1i 5378 . . 3  |-  ( F `
 A )  =  ( { <. x ,  y >.  |  ( x  e.  C  /\  ph ) } `  A
)
13 funopab 5145 . . . . 5  |-  ( Fun 
{ <. x ,  y
>.  |  ( x  e.  C  /\  ph ) } 
<-> 
A. x E* y
( x  e.  C  /\  ph ) )
14 fvopab3ig.3 . . . . . 6  |-  ( x  e.  C  ->  E* y ph )
15 moanimv 2171 . . . . . 6  |-  ( E* y ( x  e.  C  /\  ph )  <->  ( x  e.  C  ->  E* y ph ) )
1614, 15mpbir 202 . . . . 5  |-  E* y
( x  e.  C  /\  ph )
1713, 16mpgbir 1544 . . . 4  |-  Fun  { <. x ,  y >.  |  ( x  e.  C  /\  ph ) }
18 funopfv 5414 . . . 4  |-  ( Fun 
{ <. x ,  y
>.  |  ( x  e.  C  /\  ph ) }  ->  ( <. A ,  B >.  e.  { <. x ,  y >.  |  ( x  e.  C  /\  ph ) }  ->  ( { <. x ,  y
>.  |  ( x  e.  C  /\  ph ) } `  A )  =  B ) )
1917, 18ax-mp 10 . . 3  |-  ( <. A ,  B >.  e. 
{ <. x ,  y
>.  |  ( x  e.  C  /\  ph ) }  ->  ( { <. x ,  y >.  |  ( x  e.  C  /\  ph ) } `  A
)  =  B )
2012, 19syl5eq 2297 . 2  |-  ( <. A ,  B >.  e. 
{ <. x ,  y
>.  |  ( x  e.  C  /\  ph ) }  ->  ( F `  A )  =  B )
2110, 20syl6 31 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( ch  ->  ( F `  A )  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621   E*wmo 2115   <.cop 3547   {copab 3973   Fun wfun 4586   ` cfv 4592
This theorem is referenced by:  fvmptg  5452  fvopab6  5473  ov6g  5837
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pr 4108
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-sbc 2922  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-br 3921  df-opab 3975  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fv 4608
  Copyright terms: Public domain W3C validator