MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptss Structured version   Unicode version

Theorem fvmptss 5779
Description: If all the values of the mapping are subsets of a class  C, then so is any evaluation of the mapping, even if  D is not in the base set  A. (Contributed by Mario Carneiro, 13-Feb-2015.)
Hypothesis
Ref Expression
fvmpt2.1  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
fvmptss  |-  ( A. x  e.  A  B  C_  C  ->  ( F `  D )  C_  C
)
Distinct variable groups:    x, A    x, C
Allowed substitution hints:    B( x)    D( x)    F( x)

Proof of Theorem fvmptss
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 fvmpt2.1 . . . . 5  |-  F  =  ( x  e.  A  |->  B )
21dmmptss 5331 . . . 4  |-  dom  F  C_  A
32sseli 3349 . . 3  |-  ( D  e.  dom  F  ->  D  e.  A )
4 fveq2 5688 . . . . . . 7  |-  ( y  =  D  ->  ( F `  y )  =  ( F `  D ) )
54sseq1d 3380 . . . . . 6  |-  ( y  =  D  ->  (
( F `  y
)  C_  C  <->  ( F `  D )  C_  C
) )
65imbi2d 316 . . . . 5  |-  ( y  =  D  ->  (
( A. x  e.  A  B  C_  C  ->  ( F `  y
)  C_  C )  <->  ( A. x  e.  A  B  C_  C  ->  ( F `  D )  C_  C ) ) )
7 nfcv 2577 . . . . . 6  |-  F/_ x
y
8 nfra1 2764 . . . . . . 7  |-  F/ x A. x  e.  A  B  C_  C
9 nfmpt1 4378 . . . . . . . . . 10  |-  F/_ x
( x  e.  A  |->  B )
101, 9nfcxfr 2574 . . . . . . . . 9  |-  F/_ x F
1110, 7nffv 5695 . . . . . . . 8  |-  F/_ x
( F `  y
)
12 nfcv 2577 . . . . . . . 8  |-  F/_ x C
1311, 12nfss 3346 . . . . . . 7  |-  F/ x
( F `  y
)  C_  C
148, 13nfim 1857 . . . . . 6  |-  F/ x
( A. x  e.  A  B  C_  C  ->  ( F `  y
)  C_  C )
15 fveq2 5688 . . . . . . . 8  |-  ( x  =  y  ->  ( F `  x )  =  ( F `  y ) )
1615sseq1d 3380 . . . . . . 7  |-  ( x  =  y  ->  (
( F `  x
)  C_  C  <->  ( F `  y )  C_  C
) )
1716imbi2d 316 . . . . . 6  |-  ( x  =  y  ->  (
( A. x  e.  A  B  C_  C  ->  ( F `  x
)  C_  C )  <->  ( A. x  e.  A  B  C_  C  ->  ( F `  y )  C_  C ) ) )
181dmmpt 5330 . . . . . . . . . . 11  |-  dom  F  =  { x  e.  A  |  B  e.  _V }
1918rabeq2i 2967 . . . . . . . . . 10  |-  ( x  e.  dom  F  <->  ( x  e.  A  /\  B  e. 
_V ) )
201fvmpt2 5778 . . . . . . . . . . 11  |-  ( ( x  e.  A  /\  B  e.  _V )  ->  ( F `  x
)  =  B )
21 eqimss 3405 . . . . . . . . . . 11  |-  ( ( F `  x )  =  B  ->  ( F `  x )  C_  B )
2220, 21syl 16 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  B  e.  _V )  ->  ( F `  x
)  C_  B )
2319, 22sylbi 195 . . . . . . . . 9  |-  ( x  e.  dom  F  -> 
( F `  x
)  C_  B )
24 ndmfv 5711 . . . . . . . . . 10  |-  ( -.  x  e.  dom  F  ->  ( F `  x
)  =  (/) )
25 0ss 3663 . . . . . . . . . 10  |-  (/)  C_  B
2624, 25syl6eqss 3403 . . . . . . . . 9  |-  ( -.  x  e.  dom  F  ->  ( F `  x
)  C_  B )
2723, 26pm2.61i 164 . . . . . . . 8  |-  ( F `
 x )  C_  B
28 rsp 2774 . . . . . . . . 9  |-  ( A. x  e.  A  B  C_  C  ->  ( x  e.  A  ->  B  C_  C ) )
2928impcom 430 . . . . . . . 8  |-  ( ( x  e.  A  /\  A. x  e.  A  B  C_  C )  ->  B  C_  C )
3027, 29syl5ss 3364 . . . . . . 7  |-  ( ( x  e.  A  /\  A. x  e.  A  B  C_  C )  ->  ( F `  x )  C_  C )
3130ex 434 . . . . . 6  |-  ( x  e.  A  ->  ( A. x  e.  A  B  C_  C  ->  ( F `  x )  C_  C ) )
327, 14, 17, 31vtoclgaf 3032 . . . . 5  |-  ( y  e.  A  ->  ( A. x  e.  A  B  C_  C  ->  ( F `  y )  C_  C ) )
336, 32vtoclga 3033 . . . 4  |-  ( D  e.  A  ->  ( A. x  e.  A  B  C_  C  ->  ( F `  D )  C_  C ) )
3433impcom 430 . . 3  |-  ( ( A. x  e.  A  B  C_  C  /\  D  e.  A )  ->  ( F `  D )  C_  C )
353, 34sylan2 471 . 2  |-  ( ( A. x  e.  A  B  C_  C  /\  D  e.  dom  F )  -> 
( F `  D
)  C_  C )
36 ndmfv 5711 . . . 4  |-  ( -.  D  e.  dom  F  ->  ( F `  D
)  =  (/) )
3736adantl 463 . . 3  |-  ( ( A. x  e.  A  B  C_  C  /\  -.  D  e.  dom  F )  ->  ( F `  D )  =  (/) )
38 0ss 3663 . . 3  |-  (/)  C_  C
3937, 38syl6eqss 3403 . 2  |-  ( ( A. x  e.  A  B  C_  C  /\  -.  D  e.  dom  F )  ->  ( F `  D )  C_  C
)
4035, 39pm2.61dan 784 1  |-  ( A. x  e.  A  B  C_  C  ->  ( F `  D )  C_  C
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1364    e. wcel 1761   A.wral 2713   _Vcvv 2970    C_ wss 3325   (/)c0 3634    e. cmpt 4347   dom cdm 4836   ` cfv 5415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-br 4290  df-opab 4348  df-mpt 4349  df-id 4632  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fv 5423
This theorem is referenced by:  relmptopab  6307  ovmptss  6653
  Copyright terms: Public domain W3C validator