MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptss Structured version   Unicode version

Theorem fvmptss 5965
Description: If all the values of the mapping are subsets of a class  C, then so is any evaluation of the mapping, even if  D is not in the base set  A. (Contributed by Mario Carneiro, 13-Feb-2015.)
Hypothesis
Ref Expression
mptrcl.1  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
fvmptss  |-  ( A. x  e.  A  B  C_  C  ->  ( F `  D )  C_  C
)
Distinct variable groups:    x, A    x, C
Allowed substitution hints:    B( x)    D( x)    F( x)

Proof of Theorem fvmptss
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 mptrcl.1 . . . . 5  |-  F  =  ( x  e.  A  |->  B )
21dmmptss 5509 . . . 4  |-  dom  F  C_  A
32sseli 3495 . . 3  |-  ( D  e.  dom  F  ->  D  e.  A )
4 fveq2 5872 . . . . . . 7  |-  ( y  =  D  ->  ( F `  y )  =  ( F `  D ) )
54sseq1d 3526 . . . . . 6  |-  ( y  =  D  ->  (
( F `  y
)  C_  C  <->  ( F `  D )  C_  C
) )
65imbi2d 316 . . . . 5  |-  ( y  =  D  ->  (
( A. x  e.  A  B  C_  C  ->  ( F `  y
)  C_  C )  <->  ( A. x  e.  A  B  C_  C  ->  ( F `  D )  C_  C ) ) )
7 nfcv 2619 . . . . . 6  |-  F/_ x
y
8 nfra1 2838 . . . . . . 7  |-  F/ x A. x  e.  A  B  C_  C
9 nfmpt1 4546 . . . . . . . . . 10  |-  F/_ x
( x  e.  A  |->  B )
101, 9nfcxfr 2617 . . . . . . . . 9  |-  F/_ x F
1110, 7nffv 5879 . . . . . . . 8  |-  F/_ x
( F `  y
)
12 nfcv 2619 . . . . . . . 8  |-  F/_ x C
1311, 12nfss 3492 . . . . . . 7  |-  F/ x
( F `  y
)  C_  C
148, 13nfim 1921 . . . . . 6  |-  F/ x
( A. x  e.  A  B  C_  C  ->  ( F `  y
)  C_  C )
15 fveq2 5872 . . . . . . . 8  |-  ( x  =  y  ->  ( F `  x )  =  ( F `  y ) )
1615sseq1d 3526 . . . . . . 7  |-  ( x  =  y  ->  (
( F `  x
)  C_  C  <->  ( F `  y )  C_  C
) )
1716imbi2d 316 . . . . . 6  |-  ( x  =  y  ->  (
( A. x  e.  A  B  C_  C  ->  ( F `  x
)  C_  C )  <->  ( A. x  e.  A  B  C_  C  ->  ( F `  y )  C_  C ) ) )
181dmmpt 5508 . . . . . . . . . . 11  |-  dom  F  =  { x  e.  A  |  B  e.  _V }
1918rabeq2i 3106 . . . . . . . . . 10  |-  ( x  e.  dom  F  <->  ( x  e.  A  /\  B  e. 
_V ) )
201fvmpt2 5964 . . . . . . . . . . 11  |-  ( ( x  e.  A  /\  B  e.  _V )  ->  ( F `  x
)  =  B )
21 eqimss 3551 . . . . . . . . . . 11  |-  ( ( F `  x )  =  B  ->  ( F `  x )  C_  B )
2220, 21syl 16 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  B  e.  _V )  ->  ( F `  x
)  C_  B )
2319, 22sylbi 195 . . . . . . . . 9  |-  ( x  e.  dom  F  -> 
( F `  x
)  C_  B )
24 ndmfv 5896 . . . . . . . . . 10  |-  ( -.  x  e.  dom  F  ->  ( F `  x
)  =  (/) )
25 0ss 3823 . . . . . . . . . 10  |-  (/)  C_  B
2624, 25syl6eqss 3549 . . . . . . . . 9  |-  ( -.  x  e.  dom  F  ->  ( F `  x
)  C_  B )
2723, 26pm2.61i 164 . . . . . . . 8  |-  ( F `
 x )  C_  B
28 rsp 2823 . . . . . . . . 9  |-  ( A. x  e.  A  B  C_  C  ->  ( x  e.  A  ->  B  C_  C ) )
2928impcom 430 . . . . . . . 8  |-  ( ( x  e.  A  /\  A. x  e.  A  B  C_  C )  ->  B  C_  C )
3027, 29syl5ss 3510 . . . . . . 7  |-  ( ( x  e.  A  /\  A. x  e.  A  B  C_  C )  ->  ( F `  x )  C_  C )
3130ex 434 . . . . . 6  |-  ( x  e.  A  ->  ( A. x  e.  A  B  C_  C  ->  ( F `  x )  C_  C ) )
327, 14, 17, 31vtoclgaf 3172 . . . . 5  |-  ( y  e.  A  ->  ( A. x  e.  A  B  C_  C  ->  ( F `  y )  C_  C ) )
336, 32vtoclga 3173 . . . 4  |-  ( D  e.  A  ->  ( A. x  e.  A  B  C_  C  ->  ( F `  D )  C_  C ) )
3433impcom 430 . . 3  |-  ( ( A. x  e.  A  B  C_  C  /\  D  e.  A )  ->  ( F `  D )  C_  C )
353, 34sylan2 474 . 2  |-  ( ( A. x  e.  A  B  C_  C  /\  D  e.  dom  F )  -> 
( F `  D
)  C_  C )
36 ndmfv 5896 . . . 4  |-  ( -.  D  e.  dom  F  ->  ( F `  D
)  =  (/) )
3736adantl 466 . . 3  |-  ( ( A. x  e.  A  B  C_  C  /\  -.  D  e.  dom  F )  ->  ( F `  D )  =  (/) )
38 0ss 3823 . . 3  |-  (/)  C_  C
3937, 38syl6eqss 3549 . 2  |-  ( ( A. x  e.  A  B  C_  C  /\  -.  D  e.  dom  F )  ->  ( F `  D )  C_  C
)
4035, 39pm2.61dan 791 1  |-  ( A. x  e.  A  B  C_  C  ->  ( F `  D )  C_  C
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1395    e. wcel 1819   A.wral 2807   _Vcvv 3109    C_ wss 3471   (/)c0 3793    |-> cmpt 4515   dom cdm 5008   ` cfv 5594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fv 5602
This theorem is referenced by:  relmptopab  6522  ovmptss  6880
  Copyright terms: Public domain W3C validator