MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptmap Structured version   Unicode version

Theorem fvmptmap 7254
Description: Special case of fvmpt 5779 for operator theorems. (Contributed by NM, 27-Nov-2007.)
Hypotheses
Ref Expression
fvmptmap.1  |-  C  e. 
_V
fvmptmap.2  |-  D  e. 
_V
fvmptmap.3  |-  R  e. 
_V
fvmptmap.4  |-  ( x  =  A  ->  B  =  C )
fvmptmap.5  |-  F  =  ( x  e.  ( R  ^m  D ) 
|->  B )
Assertion
Ref Expression
fvmptmap  |-  ( A : D --> R  -> 
( F `  A
)  =  C )
Distinct variable groups:    x, A    x, C    x, D    x, R
Allowed substitution hints:    B( x)    F( x)

Proof of Theorem fvmptmap
StepHypRef Expression
1 fvmptmap.3 . . 3  |-  R  e. 
_V
2 fvmptmap.2 . . 3  |-  D  e. 
_V
31, 2elmap 7246 . 2  |-  ( A  e.  ( R  ^m  D )  <->  A : D
--> R )
4 fvmptmap.4 . . 3  |-  ( x  =  A  ->  B  =  C )
5 fvmptmap.5 . . 3  |-  F  =  ( x  e.  ( R  ^m  D ) 
|->  B )
6 fvmptmap.1 . . 3  |-  C  e. 
_V
74, 5, 6fvmpt 5779 . 2  |-  ( A  e.  ( R  ^m  D )  ->  ( F `  A )  =  C )
83, 7sylbir 213 1  |-  ( A : D --> R  -> 
( F `  A
)  =  C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1369    e. wcel 1756   _Vcvv 2977    e. cmpt 4355   -->wf 5419   ` cfv 5423  (class class class)co 6096    ^m cmap 7219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-rab 2729  df-v 2979  df-sbc 3192  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-op 3889  df-uni 4097  df-br 4298  df-opab 4356  df-mpt 4357  df-id 4641  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-fv 5431  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-map 7221
This theorem is referenced by:  itg2val  21211  nmopval  25265  nmfnval  25285  eigvecval  25305  eigvalfval  25306  specval  25307
  Copyright terms: Public domain W3C validator