MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmpti Unicode version

Theorem fvmpti 5764
Description: Value of a function given in maps-to notation. (Contributed by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
fvmptg.1  |-  ( x  =  A  ->  B  =  C )
fvmptg.2  |-  F  =  ( x  e.  D  |->  B )
Assertion
Ref Expression
fvmpti  |-  ( A  e.  D  ->  ( F `  A )  =  (  _I  `  C
) )
Distinct variable groups:    x, A    x, C    x, D
Allowed substitution hints:    B( x)    F( x)

Proof of Theorem fvmpti
StepHypRef Expression
1 fvmptg.1 . . . 4  |-  ( x  =  A  ->  B  =  C )
2 fvmptg.2 . . . 4  |-  F  =  ( x  e.  D  |->  B )
31, 2fvmptg 5763 . . 3  |-  ( ( A  e.  D  /\  C  e.  _V )  ->  ( F `  A
)  =  C )
4 fvi 5742 . . . 4  |-  ( C  e.  _V  ->  (  _I  `  C )  =  C )
54adantl 453 . . 3  |-  ( ( A  e.  D  /\  C  e.  _V )  ->  (  _I  `  C
)  =  C )
63, 5eqtr4d 2439 . 2  |-  ( ( A  e.  D  /\  C  e.  _V )  ->  ( F `  A
)  =  (  _I 
`  C ) )
71eleq1d 2470 . . . . . . . 8  |-  ( x  =  A  ->  ( B  e.  _V  <->  C  e.  _V ) )
82dmmpt 5324 . . . . . . . 8  |-  dom  F  =  { x  e.  D  |  B  e.  _V }
97, 8elrab2 3054 . . . . . . 7  |-  ( A  e.  dom  F  <->  ( A  e.  D  /\  C  e. 
_V ) )
109baib 872 . . . . . 6  |-  ( A  e.  D  ->  ( A  e.  dom  F  <->  C  e.  _V ) )
1110notbid 286 . . . . 5  |-  ( A  e.  D  ->  ( -.  A  e.  dom  F  <->  -.  C  e.  _V ) )
12 ndmfv 5714 . . . . 5  |-  ( -.  A  e.  dom  F  ->  ( F `  A
)  =  (/) )
1311, 12syl6bir 221 . . . 4  |-  ( A  e.  D  ->  ( -.  C  e.  _V  ->  ( F `  A
)  =  (/) ) )
1413imp 419 . . 3  |-  ( ( A  e.  D  /\  -.  C  e.  _V )  ->  ( F `  A )  =  (/) )
15 fvprc 5681 . . . 4  |-  ( -.  C  e.  _V  ->  (  _I  `  C )  =  (/) )
1615adantl 453 . . 3  |-  ( ( A  e.  D  /\  -.  C  e.  _V )  ->  (  _I  `  C )  =  (/) )
1714, 16eqtr4d 2439 . 2  |-  ( ( A  e.  D  /\  -.  C  e.  _V )  ->  ( F `  A )  =  (  _I  `  C ) )
186, 17pm2.61dan 767 1  |-  ( A  e.  D  ->  ( F `  A )  =  (  _I  `  C
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   _Vcvv 2916   (/)c0 3588    e. cmpt 4226    _I cid 4453   dom cdm 4837   ` cfv 5413
This theorem is referenced by:  fvmpt2i  5770  fvmptex  5774  sumeq2ii  12442  summolem3  12463  fsumf1o  12472  isumshft  12574  prodeq2ii  25192  prodmolem3  25212  fprodf1o  25225
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fv 5421
  Copyright terms: Public domain W3C validator