MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptdf Structured version   Unicode version

Theorem fvmptdf 5790
Description: Alternate deduction version of fvmpt 5779, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
Hypotheses
Ref Expression
fvmptdf.1  |-  ( ph  ->  A  e.  D )
fvmptdf.2  |-  ( (
ph  /\  x  =  A )  ->  B  e.  V )
fvmptdf.3  |-  ( (
ph  /\  x  =  A )  ->  (
( F `  A
)  =  B  ->  ps ) )
fvmptdf.4  |-  F/_ x F
fvmptdf.5  |-  F/ x ps
Assertion
Ref Expression
fvmptdf  |-  ( ph  ->  ( F  =  ( x  e.  D  |->  B )  ->  ps )
)
Distinct variable groups:    x, A    x, D    ph, x
Allowed substitution hints:    ps( x)    B( x)    F( x)    V( x)

Proof of Theorem fvmptdf
StepHypRef Expression
1 nfv 1673 . 2  |-  F/ x ph
2 fvmptdf.4 . . . 4  |-  F/_ x F
3 nfmpt1 4386 . . . 4  |-  F/_ x
( x  e.  D  |->  B )
42, 3nfeq 2591 . . 3  |-  F/ x  F  =  ( x  e.  D  |->  B )
5 fvmptdf.5 . . 3  |-  F/ x ps
64, 5nfim 1853 . 2  |-  F/ x
( F  =  ( x  e.  D  |->  B )  ->  ps )
7 fvmptdf.1 . . . 4  |-  ( ph  ->  A  e.  D )
8 elex 2986 . . . 4  |-  ( A  e.  D  ->  A  e.  _V )
97, 8syl 16 . . 3  |-  ( ph  ->  A  e.  _V )
10 isset 2981 . . 3  |-  ( A  e.  _V  <->  E. x  x  =  A )
119, 10sylib 196 . 2  |-  ( ph  ->  E. x  x  =  A )
12 fveq1 5695 . . 3  |-  ( F  =  ( x  e.  D  |->  B )  -> 
( F `  A
)  =  ( ( x  e.  D  |->  B ) `  A ) )
13 simpr 461 . . . . . . 7  |-  ( (
ph  /\  x  =  A )  ->  x  =  A )
1413fveq2d 5700 . . . . . 6  |-  ( (
ph  /\  x  =  A )  ->  (
( x  e.  D  |->  B ) `  x
)  =  ( ( x  e.  D  |->  B ) `  A ) )
157adantr 465 . . . . . . . 8  |-  ( (
ph  /\  x  =  A )  ->  A  e.  D )
1613, 15eqeltrd 2517 . . . . . . 7  |-  ( (
ph  /\  x  =  A )  ->  x  e.  D )
17 fvmptdf.2 . . . . . . 7  |-  ( (
ph  /\  x  =  A )  ->  B  e.  V )
18 eqid 2443 . . . . . . . 8  |-  ( x  e.  D  |->  B )  =  ( x  e.  D  |->  B )
1918fvmpt2 5786 . . . . . . 7  |-  ( ( x  e.  D  /\  B  e.  V )  ->  ( ( x  e.  D  |->  B ) `  x )  =  B )
2016, 17, 19syl2anc 661 . . . . . 6  |-  ( (
ph  /\  x  =  A )  ->  (
( x  e.  D  |->  B ) `  x
)  =  B )
2114, 20eqtr3d 2477 . . . . 5  |-  ( (
ph  /\  x  =  A )  ->  (
( x  e.  D  |->  B ) `  A
)  =  B )
2221eqeq2d 2454 . . . 4  |-  ( (
ph  /\  x  =  A )  ->  (
( F `  A
)  =  ( ( x  e.  D  |->  B ) `  A )  <-> 
( F `  A
)  =  B ) )
23 fvmptdf.3 . . . 4  |-  ( (
ph  /\  x  =  A )  ->  (
( F `  A
)  =  B  ->  ps ) )
2422, 23sylbid 215 . . 3  |-  ( (
ph  /\  x  =  A )  ->  (
( F `  A
)  =  ( ( x  e.  D  |->  B ) `  A )  ->  ps ) )
2512, 24syl5 32 . 2  |-  ( (
ph  /\  x  =  A )  ->  ( F  =  ( x  e.  D  |->  B )  ->  ps ) )
261, 6, 11, 25exlimdd 1908 1  |-  ( ph  ->  ( F  =  ( x  e.  D  |->  B )  ->  ps )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369   E.wex 1586   F/wnf 1589    e. wcel 1756   F/_wnfc 2571   _Vcvv 2977    e. cmpt 4355   ` cfv 5423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-sn 3883  df-pr 3885  df-op 3889  df-uni 4097  df-br 4298  df-opab 4356  df-mpt 4357  df-id 4641  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fv 5431
This theorem is referenced by:  fvmptdv  5791  yonedalem4b  15091
  Copyright terms: Public domain W3C validator