Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvline Structured version   Visualization version   Unicode version

Theorem fvline 30982
Description: Calculate the value of the Line function. (Contributed by Scott Fenton, 25-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
fvline  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B ) )  -> 
( ALine B )  =  { x  |  x  Colinear  <. A ,  B >. } )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    N( x)

Proof of Theorem fvline
Dummy variables  a 
b  l  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2471 . . . . 5  |-  [ <. A ,  B >. ] `'  Colinear  =  [ <. A ,  B >. ] `'  Colinear
2 fveq2 5879 . . . . . . . . 9  |-  ( n  =  N  ->  ( EE `  n )  =  ( EE `  N
) )
32eleq2d 2534 . . . . . . . 8  |-  ( n  =  N  ->  ( A  e.  ( EE `  n )  <->  A  e.  ( EE `  N ) ) )
42eleq2d 2534 . . . . . . . 8  |-  ( n  =  N  ->  ( B  e.  ( EE `  n )  <->  B  e.  ( EE `  N ) ) )
53, 43anbi12d 1366 . . . . . . 7  |-  ( n  =  N  ->  (
( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n )  /\  A  =/=  B
)  <->  ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
) ) )
65anbi1d 719 . . . . . 6  |-  ( n  =  N  ->  (
( ( A  e.  ( EE `  n
)  /\  B  e.  ( EE `  n )  /\  A  =/=  B
)  /\  [ <. A ,  B >. ] `'  Colinear  =  [ <. A ,  B >. ] `'  Colinear  )  <->  ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  A  =/=  B )  /\  [ <. A ,  B >. ] `'  Colinear  =  [ <. A ,  B >. ] `'  Colinear  ) ) )
76rspcev 3136 . . . . 5  |-  ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  [ <. A ,  B >. ] `'  Colinear  =  [ <. A ,  B >. ] `'  Colinear  ) )  ->  E. n  e.  NN  ( ( A  e.  ( EE `  n
)  /\  B  e.  ( EE `  n )  /\  A  =/=  B
)  /\  [ <. A ,  B >. ] `'  Colinear  =  [ <. A ,  B >. ] `'  Colinear  ) )
81, 7mpanr2 698 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B ) )  ->  E. n  e.  NN  ( ( A  e.  ( EE `  n
)  /\  B  e.  ( EE `  n )  /\  A  =/=  B
)  /\  [ <. A ,  B >. ] `'  Colinear  =  [ <. A ,  B >. ] `'  Colinear  ) )
9 simpr1 1036 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B ) )  ->  A  e.  ( EE `  N ) )
10 simpr2 1037 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B ) )  ->  B  e.  ( EE `  N ) )
11 colinearex 30898 . . . . . . . 8  |-  Colinear  e.  _V
1211cnvex 6759 . . . . . . 7  |-  `'  Colinear  e. 
_V
13 ecexg 7385 . . . . . . 7  |-  ( `'  Colinear 
e.  _V  ->  [ <. A ,  B >. ] `'  Colinear  e. 
_V )
1412, 13ax-mp 5 . . . . . 6  |-  [ <. A ,  B >. ] `'  Colinear  e. 
_V
15 eleq1 2537 . . . . . . . . . 10  |-  ( a  =  A  ->  (
a  e.  ( EE
`  n )  <->  A  e.  ( EE `  n ) ) )
16 neeq1 2705 . . . . . . . . . 10  |-  ( a  =  A  ->  (
a  =/=  b  <->  A  =/=  b ) )
1715, 163anbi13d 1367 . . . . . . . . 9  |-  ( a  =  A  ->  (
( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n )  /\  a  =/=  b
)  <->  ( A  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  A  =/=  b
) ) )
18 opeq1 4158 . . . . . . . . . . 11  |-  ( a  =  A  ->  <. a ,  b >.  =  <. A ,  b >. )
1918eceq1d 7418 . . . . . . . . . 10  |-  ( a  =  A  ->  [ <. a ,  b >. ] `'  Colinear  =  [ <. A ,  b
>. ] `'  Colinear  )
2019eqeq2d 2481 . . . . . . . . 9  |-  ( a  =  A  ->  (
l  =  [ <. a ,  b >. ] `'  Colinear  <->  l  =  [ <. A ,  b
>. ] `'  Colinear  ) )
2117, 20anbi12d 725 . . . . . . . 8  |-  ( a  =  A  ->  (
( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  a  =/=  b
)  /\  l  =  [ <. a ,  b
>. ] `'  Colinear  )  <->  ( ( A  e.  ( EE `  n )  /\  b  e.  ( EE `  n
)  /\  A  =/=  b )  /\  l  =  [ <. A ,  b
>. ] `'  Colinear  ) ) )
2221rexbidv 2892 . . . . . . 7  |-  ( a  =  A  ->  ( E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  a  =/=  b
)  /\  l  =  [ <. a ,  b
>. ] `'  Colinear  )  <->  E. n  e.  NN  ( ( A  e.  ( EE `  n )  /\  b  e.  ( EE `  n
)  /\  A  =/=  b )  /\  l  =  [ <. A ,  b
>. ] `'  Colinear  ) ) )
23 eleq1 2537 . . . . . . . . . 10  |-  ( b  =  B  ->  (
b  e.  ( EE
`  n )  <->  B  e.  ( EE `  n ) ) )
24 neeq2 2706 . . . . . . . . . 10  |-  ( b  =  B  ->  ( A  =/=  b  <->  A  =/=  B ) )
2523, 243anbi23d 1368 . . . . . . . . 9  |-  ( b  =  B  ->  (
( A  e.  ( EE `  n )  /\  b  e.  ( EE `  n )  /\  A  =/=  b
)  <->  ( A  e.  ( EE `  n
)  /\  B  e.  ( EE `  n )  /\  A  =/=  B
) ) )
26 opeq2 4159 . . . . . . . . . . 11  |-  ( b  =  B  ->  <. A , 
b >.  =  <. A ,  B >. )
2726eceq1d 7418 . . . . . . . . . 10  |-  ( b  =  B  ->  [ <. A ,  b >. ] `'  Colinear  =  [ <. A ,  B >. ] `'  Colinear  )
2827eqeq2d 2481 . . . . . . . . 9  |-  ( b  =  B  ->  (
l  =  [ <. A ,  b >. ] `'  Colinear  <->  l  =  [ <. A ,  B >. ] `'  Colinear  ) )
2925, 28anbi12d 725 . . . . . . . 8  |-  ( b  =  B  ->  (
( ( A  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  A  =/=  b
)  /\  l  =  [ <. A ,  b
>. ] `'  Colinear  )  <->  ( ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n
)  /\  A  =/=  B )  /\  l  =  [ <. A ,  B >. ] `'  Colinear  ) ) )
3029rexbidv 2892 . . . . . . 7  |-  ( b  =  B  ->  ( E. n  e.  NN  ( ( A  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  A  =/=  b
)  /\  l  =  [ <. A ,  b
>. ] `'  Colinear  )  <->  E. n  e.  NN  ( ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n
)  /\  A  =/=  B )  /\  l  =  [ <. A ,  B >. ] `'  Colinear  ) ) )
31 eqeq1 2475 . . . . . . . . 9  |-  ( l  =  [ <. A ,  B >. ] `'  Colinear  -> 
( l  =  [ <. A ,  B >. ] `' 
Colinear  <->  [ <. A ,  B >. ] `'  Colinear  =  [ <. A ,  B >. ] `' 
Colinear  ) )
3231anbi2d 718 . . . . . . . 8  |-  ( l  =  [ <. A ,  B >. ] `'  Colinear  -> 
( ( ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n
)  /\  A  =/=  B )  /\  l  =  [ <. A ,  B >. ] `'  Colinear  )  <->  ( ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n
)  /\  A  =/=  B )  /\  [ <. A ,  B >. ] `'  Colinear  =  [ <. A ,  B >. ] `'  Colinear  ) ) )
3332rexbidv 2892 . . . . . . 7  |-  ( l  =  [ <. A ,  B >. ] `'  Colinear  -> 
( E. n  e.  NN  ( ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n
)  /\  A  =/=  B )  /\  l  =  [ <. A ,  B >. ] `'  Colinear  )  <->  E. n  e.  NN  ( ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n
)  /\  A  =/=  B )  /\  [ <. A ,  B >. ] `'  Colinear  =  [ <. A ,  B >. ] `'  Colinear  ) ) )
3422, 30, 33eloprabg 6403 . . . . . 6  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  [ <. A ,  B >. ] `' 
Colinear  e.  _V )  -> 
( <. <. A ,  B >. ,  [ <. A ,  B >. ] `'  Colinear  >.  e. 
{ <. <. a ,  b
>. ,  l >.  |  E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  a  =/=  b
)  /\  l  =  [ <. a ,  b
>. ] `'  Colinear  ) }  <->  E. n  e.  NN  ( ( A  e.  ( EE `  n
)  /\  B  e.  ( EE `  n )  /\  A  =/=  B
)  /\  [ <. A ,  B >. ] `'  Colinear  =  [ <. A ,  B >. ] `'  Colinear  ) ) )
3514, 34mp3an3 1379 . . . . 5  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( <. <. A ,  B >. ,  [ <. A ,  B >. ] `'  Colinear  >.  e. 
{ <. <. a ,  b
>. ,  l >.  |  E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  a  =/=  b
)  /\  l  =  [ <. a ,  b
>. ] `'  Colinear  ) }  <->  E. n  e.  NN  ( ( A  e.  ( EE `  n
)  /\  B  e.  ( EE `  n )  /\  A  =/=  B
)  /\  [ <. A ,  B >. ] `'  Colinear  =  [ <. A ,  B >. ] `'  Colinear  ) ) )
369, 10, 35syl2anc 673 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B ) )  -> 
( <. <. A ,  B >. ,  [ <. A ,  B >. ] `'  Colinear  >.  e. 
{ <. <. a ,  b
>. ,  l >.  |  E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  a  =/=  b
)  /\  l  =  [ <. a ,  b
>. ] `'  Colinear  ) }  <->  E. n  e.  NN  ( ( A  e.  ( EE `  n
)  /\  B  e.  ( EE `  n )  /\  A  =/=  B
)  /\  [ <. A ,  B >. ] `'  Colinear  =  [ <. A ,  B >. ] `'  Colinear  ) ) )
378, 36mpbird 240 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B ) )  ->  <. <. A ,  B >. ,  [ <. A ,  B >. ] `'  Colinear  >.  e. 
{ <. <. a ,  b
>. ,  l >.  |  E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  a  =/=  b
)  /\  l  =  [ <. a ,  b
>. ] `'  Colinear  ) } )
38 df-ov 6311 . . . 4  |-  ( ALine B )  =  (Line `  <. A ,  B >. )
39 df-br 4396 . . . . . 6  |-  ( <. A ,  B >.Line [
<. A ,  B >. ] `' 
Colinear  <->  <. <. A ,  B >. ,  [ <. A ,  B >. ] `'  Colinear  >.  e. Line
)
40 df-line2 30975 . . . . . . 7  |- Line  =  { <. <. a ,  b
>. ,  l >.  |  E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  a  =/=  b
)  /\  l  =  [ <. a ,  b
>. ] `'  Colinear  ) }
4140eleq2i 2541 . . . . . 6  |-  ( <. <. A ,  B >. ,  [ <. A ,  B >. ] `'  Colinear  >.  e. Line  <->  <. <. A ,  B >. ,  [ <. A ,  B >. ] `'  Colinear  >.  e.  { <. <. a ,  b
>. ,  l >.  |  E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  a  =/=  b
)  /\  l  =  [ <. a ,  b
>. ] `'  Colinear  ) } )
4239, 41bitri 257 . . . . 5  |-  ( <. A ,  B >.Line [
<. A ,  B >. ] `' 
Colinear  <->  <. <. A ,  B >. ,  [ <. A ,  B >. ] `'  Colinear  >.  e. 
{ <. <. a ,  b
>. ,  l >.  |  E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  a  =/=  b
)  /\  l  =  [ <. a ,  b
>. ] `'  Colinear  ) } )
43 funline 30980 . . . . . 6  |-  Fun Line
44 funbrfv 5917 . . . . . 6  |-  ( Fun Line  ->  ( <. A ,  B >.Line [ <. A ,  B >. ] `'  Colinear  ->  (Line ` 
<. A ,  B >. )  =  [ <. A ,  B >. ] `'  Colinear  ) )
4543, 44ax-mp 5 . . . . 5  |-  ( <. A ,  B >.Line [
<. A ,  B >. ] `' 
Colinear  ->  (Line `  <. A ,  B >. )  =  [ <. A ,  B >. ] `'  Colinear  )
4642, 45sylbir 218 . . . 4  |-  ( <. <. A ,  B >. ,  [ <. A ,  B >. ] `'  Colinear  >.  e.  { <. <. a ,  b
>. ,  l >.  |  E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  a  =/=  b
)  /\  l  =  [ <. a ,  b
>. ] `'  Colinear  ) }  ->  (Line `  <. A ,  B >. )  =  [ <. A ,  B >. ] `'  Colinear  )
4738, 46syl5eq 2517 . . 3  |-  ( <. <. A ,  B >. ,  [ <. A ,  B >. ] `'  Colinear  >.  e.  { <. <. a ,  b
>. ,  l >.  |  E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  a  =/=  b
)  /\  l  =  [ <. a ,  b
>. ] `'  Colinear  ) }  ->  ( ALine B
)  =  [ <. A ,  B >. ] `'  Colinear  )
4837, 47syl 17 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B ) )  -> 
( ALine B )  =  [ <. A ,  B >. ] `'  Colinear  )
49 opex 4664 . . . 4  |-  <. A ,  B >.  e.  _V
50 dfec2 7384 . . . 4  |-  ( <. A ,  B >.  e. 
_V  ->  [ <. A ,  B >. ] `'  Colinear  =  { x  |  <. A ,  B >. `'  Colinear  x } )
5149, 50ax-mp 5 . . 3  |-  [ <. A ,  B >. ] `'  Colinear  =  { x  |  <. A ,  B >. `'  Colinear  x }
52 vex 3034 . . . . 5  |-  x  e. 
_V
5349, 52brcnv 5022 . . . 4  |-  ( <. A ,  B >. `'  Colinear  x  <->  x  Colinear  <. A ,  B >. )
5453abbii 2587 . . 3  |-  { x  |  <. A ,  B >. `' 
Colinear  x }  =  {
x  |  x  Colinear  <. A ,  B >. }
5551, 54eqtri 2493 . 2  |-  [ <. A ,  B >. ] `'  Colinear  =  { x  |  x 
Colinear 
<. A ,  B >. }
5648, 55syl6eq 2521 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B ) )  -> 
( ALine B )  =  { x  |  x  Colinear  <. A ,  B >. } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904   {cab 2457    =/= wne 2641   E.wrex 2757   _Vcvv 3031   <.cop 3965   class class class wbr 4395   `'ccnv 4838   Fun wfun 5583   ` cfv 5589  (class class class)co 6308   {coprab 6309   [cec 7379   NNcn 10631   EEcee 24997    Colinear ccolin 30875  Linecline2 30972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-i2m1 9625  ax-1ne0 9626  ax-rrecex 9629  ax-cnre 9630
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-ov 6311  df-oprab 6312  df-om 6712  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-ec 7383  df-nn 10632  df-colinear 30877  df-line2 30975
This theorem is referenced by:  liness  30983  fvline2  30984  ellines  30990
  Copyright terms: Public domain W3C validator