MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvimacnvi Structured version   Unicode version

Theorem fvimacnvi 5903
Description: A member of a preimage is a function value argument. (Contributed by NM, 4-May-2007.)
Assertion
Ref Expression
fvimacnvi  |-  ( ( Fun  F  /\  A  e.  ( `' F " B ) )  -> 
( F `  A
)  e.  B )

Proof of Theorem fvimacnvi
StepHypRef Expression
1 snssi 4088 . . 3  |-  ( A  e.  ( `' F " B )  ->  { A }  C_  ( `' F " B ) )
2 funimass2 5570 . . 3  |-  ( ( Fun  F  /\  { A }  C_  ( `' F " B ) )  ->  ( F " { A } ) 
C_  B )
31, 2sylan2 472 . 2  |-  ( ( Fun  F  /\  A  e.  ( `' F " B ) )  -> 
( F " { A } )  C_  B
)
4 fvex 5784 . . . 4  |-  ( F `
 A )  e. 
_V
54snss 4068 . . 3  |-  ( ( F `  A )  e.  B  <->  { ( F `  A ) }  C_  B )
6 cnvimass 5269 . . . . . 6  |-  ( `' F " B ) 
C_  dom  F
76sseli 3413 . . . . 5  |-  ( A  e.  ( `' F " B )  ->  A  e.  dom  F )
8 funfn 5525 . . . . . 6  |-  ( Fun 
F  <->  F  Fn  dom  F )
9 fnsnfv 5834 . . . . . 6  |-  ( ( F  Fn  dom  F  /\  A  e.  dom  F )  ->  { ( F `  A ) }  =  ( F " { A } ) )
108, 9sylanb 470 . . . . 5  |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  { ( F `  A ) }  =  ( F " { A } ) )
117, 10sylan2 472 . . . 4  |-  ( ( Fun  F  /\  A  e.  ( `' F " B ) )  ->  { ( F `  A ) }  =  ( F " { A } ) )
1211sseq1d 3444 . . 3  |-  ( ( Fun  F  /\  A  e.  ( `' F " B ) )  -> 
( { ( F `
 A ) } 
C_  B  <->  ( F " { A } ) 
C_  B ) )
135, 12syl5bb 257 . 2  |-  ( ( Fun  F  /\  A  e.  ( `' F " B ) )  -> 
( ( F `  A )  e.  B  <->  ( F " { A } )  C_  B
) )
143, 13mpbird 232 1  |-  ( ( Fun  F  /\  A  e.  ( `' F " B ) )  -> 
( F `  A
)  e.  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1399    e. wcel 1826    C_ wss 3389   {csn 3944   `'ccnv 4912   dom cdm 4913   "cima 4916   Fun wfun 5490    Fn wfn 5491   ` cfv 5496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-sep 4488  ax-nul 4496  ax-pr 4601
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-ral 2737  df-rex 2738  df-rab 2741  df-v 3036  df-sbc 3253  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-nul 3712  df-if 3858  df-sn 3945  df-pr 3947  df-op 3951  df-uni 4164  df-br 4368  df-opab 4426  df-id 4709  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-fv 5504
This theorem is referenced by:  fvimacnv  5904  elpreima  5909  iinpreima  5919  lmhmpreima  17807  mpfind  18318  ofco2  19038  carsggect  28445
  Copyright terms: Public domain W3C validator