MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvimacnv Structured version   Unicode version

Theorem fvimacnv 6012
Description: The argument of a function value belongs to the preimage of any class containing the function value. Raph Levien remarks: "This proof is unsatisfying, because it seems to me that funimass2 5675 could probably be strengthened to a biconditional." (Contributed by Raph Levien, 20-Nov-2006.)
Assertion
Ref Expression
fvimacnv  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( ( F `  A )  e.  B  <->  A  e.  ( `' F " B ) ) )

Proof of Theorem fvimacnv
StepHypRef Expression
1 funfvop 6009 . . . . 5  |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  <. A ,  ( F `
 A ) >.  e.  F )
2 fvex 5891 . . . . . . 7  |-  ( F `
 A )  e. 
_V
3 opelcnvg 5033 . . . . . . 7  |-  ( ( ( F `  A
)  e.  _V  /\  A  e.  dom  F )  ->  ( <. ( F `  A ) ,  A >.  e.  `' F 
<-> 
<. A ,  ( F `
 A ) >.  e.  F ) )
42, 3mpan 674 . . . . . 6  |-  ( A  e.  dom  F  -> 
( <. ( F `  A ) ,  A >.  e.  `' F  <->  <. A , 
( F `  A
) >.  e.  F ) )
54adantl 467 . . . . 5  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( <. ( F `  A ) ,  A >.  e.  `' F  <->  <. A , 
( F `  A
) >.  e.  F ) )
61, 5mpbird 235 . . . 4  |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  <. ( F `  A
) ,  A >.  e.  `' F )
7 elimasng 5213 . . . . . 6  |-  ( ( ( F `  A
)  e.  _V  /\  A  e.  dom  F )  ->  ( A  e.  ( `' F " { ( F `  A ) } )  <->  <. ( F `  A
) ,  A >.  e.  `' F ) )
82, 7mpan 674 . . . . 5  |-  ( A  e.  dom  F  -> 
( A  e.  ( `' F " { ( F `  A ) } )  <->  <. ( F `
 A ) ,  A >.  e.  `' F ) )
98adantl 467 . . . 4  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( A  e.  ( `' F " { ( F `  A ) } )  <->  <. ( F `
 A ) ,  A >.  e.  `' F ) )
106, 9mpbird 235 . . 3  |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  A  e.  ( `' F " { ( F `
 A ) } ) )
112snss 4124 . . . . 5  |-  ( ( F `  A )  e.  B  <->  { ( F `  A ) }  C_  B )
12 imass2 5223 . . . . 5  |-  ( { ( F `  A
) }  C_  B  ->  ( `' F " { ( F `  A ) } ) 
C_  ( `' F " B ) )
1311, 12sylbi 198 . . . 4  |-  ( ( F `  A )  e.  B  ->  ( `' F " { ( F `  A ) } )  C_  ( `' F " B ) )
1413sseld 3463 . . 3  |-  ( ( F `  A )  e.  B  ->  ( A  e.  ( `' F " { ( F `
 A ) } )  ->  A  e.  ( `' F " B ) ) )
1510, 14syl5com 31 . 2  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( ( F `  A )  e.  B  ->  A  e.  ( `' F " B ) ) )
16 fvimacnvi 6011 . . . 4  |-  ( ( Fun  F  /\  A  e.  ( `' F " B ) )  -> 
( F `  A
)  e.  B )
1716ex 435 . . 3  |-  ( Fun 
F  ->  ( A  e.  ( `' F " B )  ->  ( F `  A )  e.  B ) )
1817adantr 466 . 2  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( A  e.  ( `' F " B )  ->  ( F `  A )  e.  B
) )
1915, 18impbid 193 1  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( ( F `  A )  e.  B  <->  A  e.  ( `' F " B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    e. wcel 1872   _Vcvv 3080    C_ wss 3436   {csn 3998   <.cop 4004   `'ccnv 4852   dom cdm 4853   "cima 4856   Fun wfun 5595   ` cfv 5601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-sep 4546  ax-nul 4555  ax-pr 4660
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-ral 2776  df-rex 2777  df-rab 2780  df-v 3082  df-sbc 3300  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3912  df-sn 3999  df-pr 4001  df-op 4005  df-uni 4220  df-br 4424  df-opab 4483  df-id 4768  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-iota 5565  df-fun 5603  df-fn 5604  df-fv 5609
This theorem is referenced by:  funimass3  6013  elpreima  6017  iinpreima  6025  isr0  20750  rnelfmlem  20965  rnelfm  20966  fmfnfmlem2  20968  fmfnfmlem4  20970  fmfnfm  20971  metustid  21567  metustsym  21568  metustexhalf  21569  xppreima  28250  dstfrvel  29314  ballotlemrv  29360  ballotlemrvOLD  29398  grpokerinj  32147  diaintclN  34595  dibintclN  34704  dihintcl  34881  arearect  36070  areaquad  36071
  Copyright terms: Public domain W3C validator