Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fveu Structured version   Unicode version

Theorem fveu 5840
 Description: The value of a function at a unique point. (Contributed by Scott Fenton, 6-Oct-2017.)
Assertion
Ref Expression
fveu
Distinct variable groups:   ,   ,

Proof of Theorem fveu
StepHypRef Expression
1 df-fv 5576 . 2
2 iotauni 5544 . 2
31, 2syl5eq 2455 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wceq 1405  weu 2238  cab 2387  cuni 4190   class class class wbr 4394  cio 5530  cfv 5568 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380 This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-rex 2759  df-v 3060  df-sbc 3277  df-un 3418  df-sn 3972  df-pr 3974  df-uni 4191  df-iota 5532  df-fv 5576 This theorem is referenced by:  afveu  37587
 Copyright terms: Public domain W3C validator