MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fveu Structured version   Unicode version

Theorem fveu 5856
Description: The value of a function at a unique point. (Contributed by Scott Fenton, 6-Oct-2017.)
Assertion
Ref Expression
fveu  |-  ( E! x  A F x  ->  ( F `  A )  =  U. { x  |  A F x } )
Distinct variable groups:    x, F    x, A

Proof of Theorem fveu
StepHypRef Expression
1 df-fv 5594 . 2  |-  ( F `
 A )  =  ( iota x A F x )
2 iotauni 5561 . 2  |-  ( E! x  A F x  ->  ( iota x A F x )  = 
U. { x  |  A F x }
)
31, 2syl5eq 2520 1  |-  ( E! x  A F x  ->  ( F `  A )  =  U. { x  |  A F x } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1379   E!weu 2275   {cab 2452   U.cuni 4245   class class class wbr 4447   iotacio 5547   ` cfv 5586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-rex 2820  df-v 3115  df-sbc 3332  df-un 3481  df-sn 4028  df-pr 4030  df-uni 4246  df-iota 5549  df-fv 5594
This theorem is referenced by:  afveu  31705
  Copyright terms: Public domain W3C validator