MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fveq12i Structured version   Unicode version

Theorem fveq12i 5886
Description: Equality deduction for function value. (Contributed by FL, 27-Jun-2014.)
Hypotheses
Ref Expression
fveq12i.1  |-  F  =  G
fveq12i.2  |-  A  =  B
Assertion
Ref Expression
fveq12i  |-  ( F `
 A )  =  ( G `  B
)

Proof of Theorem fveq12i
StepHypRef Expression
1 fveq12i.1 . . 3  |-  F  =  G
21fveq1i 5882 . 2  |-  ( F `
 A )  =  ( G `  A
)
3 fveq12i.2 . . 3  |-  A  =  B
43fveq2i 5884 . 2  |-  ( G `
 A )  =  ( G `  B
)
52, 4eqtri 2458 1  |-  ( F `
 A )  =  ( G `  B
)
Colors of variables: wff setvar class
Syntax hints:    = wceq 1437   ` cfv 5601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-rex 2788  df-rab 2791  df-v 3089  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-br 4427  df-iota 5565  df-fv 5609
This theorem is referenced by:  cats1fvn  12939  sadcadd  14406  sadadd2  14408  coe1fzgsumdlem  18830  evl1gsumdlem  18879  madufval  19593  kur14lem5  29721  fourierdlem62  37600  fouriersw  37663
  Copyright terms: Public domain W3C validator