Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvelrnbf Structured version   Unicode version

Theorem fvelrnbf 29740
Description: A version of fvelrnb 5739 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
fvelrnbf.1  |-  F/_ x A
fvelrnbf.2  |-  F/_ x B
fvelrnbf.3  |-  F/_ x F
Assertion
Ref Expression
fvelrnbf  |-  ( F  Fn  A  ->  ( B  e.  ran  F  <->  E. x  e.  A  ( F `  x )  =  B ) )

Proof of Theorem fvelrnbf
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 fvelrnb 5739 . 2  |-  ( F  Fn  A  ->  ( B  e.  ran  F  <->  E. y  e.  A  ( F `  y )  =  B ) )
2 nfcv 2579 . . 3  |-  F/_ y A
3 fvelrnbf.1 . . 3  |-  F/_ x A
4 fvelrnbf.3 . . . . 5  |-  F/_ x F
5 nfcv 2579 . . . . 5  |-  F/_ x
y
64, 5nffv 5698 . . . 4  |-  F/_ x
( F `  y
)
7 fvelrnbf.2 . . . 4  |-  F/_ x B
86, 7nfeq 2586 . . 3  |-  F/ x
( F `  y
)  =  B
9 nfv 1673 . . 3  |-  F/ y ( F `  x
)  =  B
10 fveq2 5691 . . . 4  |-  ( y  =  x  ->  ( F `  y )  =  ( F `  x ) )
1110eqeq1d 2451 . . 3  |-  ( y  =  x  ->  (
( F `  y
)  =  B  <->  ( F `  x )  =  B ) )
122, 3, 8, 9, 11cbvrexf 2942 . 2  |-  ( E. y  e.  A  ( F `  y )  =  B  <->  E. x  e.  A  ( F `  x )  =  B )
131, 12syl6bb 261 1  |-  ( F  Fn  A  ->  ( B  e.  ran  F  <->  E. x  e.  A  ( F `  x )  =  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    = wceq 1369    e. wcel 1756   F/_wnfc 2566   E.wrex 2716   ran crn 4841    Fn wfn 5413   ` cfv 5418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pr 4531
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-rab 2724  df-v 2974  df-sbc 3187  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-sn 3878  df-pr 3880  df-op 3884  df-uni 4092  df-br 4293  df-opab 4351  df-mpt 4352  df-id 4636  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-iota 5381  df-fun 5420  df-fn 5421  df-fv 5426
This theorem is referenced by:  refsumcn  29752  stoweidlem29  29824
  Copyright terms: Public domain W3C validator