MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fveecn Structured version   Unicode version

Theorem fveecn 23909
Description: The function value of a point is a complex. (Contributed by Scott Fenton, 10-Jun-2013.)
Assertion
Ref Expression
fveecn  |-  ( ( A  e.  ( EE
`  N )  /\  I  e.  ( 1 ... N ) )  ->  ( A `  I )  e.  CC )

Proof of Theorem fveecn
StepHypRef Expression
1 fveere 23908 . 2  |-  ( ( A  e.  ( EE
`  N )  /\  I  e.  ( 1 ... N ) )  ->  ( A `  I )  e.  RR )
21recnd 9622 1  |-  ( ( A  e.  ( EE
`  N )  /\  I  e.  ( 1 ... N ) )  ->  ( A `  I )  e.  CC )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1767   ` cfv 5588  (class class class)co 6284   CCcc 9490   1c1 9493   ...cfz 11672   EEcee 23895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-resscn 9549
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-fv 5596  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-map 7422  df-ee 23898
This theorem is referenced by:  brbtwn2  23912  colinearalglem2  23914  colinearalg  23917  axcgrrflx  23921  axcgrid  23923  axsegconlem1  23924  ax5seglem1  23935  ax5seglem2  23936  ax5seglem4  23939  ax5seglem5  23940  ax5seglem6  23941  ax5seglem9  23944  axbtwnid  23946  axpasch  23948  axlowdimlem16  23964  axlowdimlem17  23965  axeuclidlem  23969  axeuclid  23970  axcontlem2  23972  axcontlem4  23974  axcontlem7  23977  axcontlem8  23978
  Copyright terms: Public domain W3C validator