MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvcoe1 Structured version   Unicode version

Theorem fvcoe1 18114
Description: Value of a multivariate coefficient in terms of the coefficient vector. (Contributed by Stefan O'Rear, 21-Mar-2015.)
Hypothesis
Ref Expression
coe1fval.a  |-  A  =  (coe1 `  F )
Assertion
Ref Expression
fvcoe1  |-  ( ( F  e.  V  /\  X  e.  ( NN0  ^m  1o ) )  -> 
( F `  X
)  =  ( A `
 ( X `  (/) ) ) )

Proof of Theorem fvcoe1
StepHypRef Expression
1 df1o2 7140 . . . . 5  |-  1o  =  { (/) }
2 nn0ex 10802 . . . . 5  |-  NN0  e.  _V
3 0ex 4563 . . . . 5  |-  (/)  e.  _V
41, 2, 3mapsnconst 7462 . . . 4  |-  ( X  e.  ( NN0  ^m  1o )  ->  X  =  ( 1o  X.  {
( X `  (/) ) } ) )
54adantl 466 . . 3  |-  ( ( F  e.  V  /\  X  e.  ( NN0  ^m  1o ) )  ->  X  =  ( 1o  X.  { ( X `  (/) ) } ) )
65fveq2d 5856 . 2  |-  ( ( F  e.  V  /\  X  e.  ( NN0  ^m  1o ) )  -> 
( F `  X
)  =  ( F `
 ( 1o  X.  { ( X `  (/) ) } ) ) )
7 elmapi 7438 . . . 4  |-  ( X  e.  ( NN0  ^m  1o )  ->  X : 1o
--> NN0 )
8 0lt1o 7152 . . . 4  |-  (/)  e.  1o
9 ffvelrn 6010 . . . 4  |-  ( ( X : 1o --> NN0  /\  (/) 
e.  1o )  -> 
( X `  (/) )  e. 
NN0 )
107, 8, 9sylancl 662 . . 3  |-  ( X  e.  ( NN0  ^m  1o )  ->  ( X `
 (/) )  e.  NN0 )
11 coe1fval.a . . . 4  |-  A  =  (coe1 `  F )
1211coe1fv 18113 . . 3  |-  ( ( F  e.  V  /\  ( X `  (/) )  e. 
NN0 )  ->  ( A `  ( X `  (/) ) )  =  ( F `  ( 1o  X.  { ( X `
 (/) ) } ) ) )
1310, 12sylan2 474 . 2  |-  ( ( F  e.  V  /\  X  e.  ( NN0  ^m  1o ) )  -> 
( A `  ( X `  (/) ) )  =  ( F `  ( 1o  X.  { ( X `  (/) ) } ) ) )
146, 13eqtr4d 2485 1  |-  ( ( F  e.  V  /\  X  e.  ( NN0  ^m  1o ) )  -> 
( F `  X
)  =  ( A `
 ( X `  (/) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1381    e. wcel 1802   (/)c0 3767   {csn 4010    X. cxp 4983   -->wf 5570   ` cfv 5574  (class class class)co 6277   1oc1o 7121    ^m cmap 7418   NN0cn0 10796  coe1cco1 18085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4544  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-i2m1 9558  ax-1ne0 9559  ax-rrecex 9562  ax-cnre 9563
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-ral 2796  df-rex 2797  df-reu 2798  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-pss 3474  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-tp 4015  df-op 4017  df-uni 4231  df-iun 4313  df-br 4434  df-opab 4492  df-mpt 4493  df-tr 4527  df-eprel 4777  df-id 4781  df-po 4786  df-so 4787  df-fr 4824  df-we 4826  df-ord 4867  df-on 4868  df-lim 4869  df-suc 4870  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6682  df-1st 6781  df-2nd 6782  df-recs 7040  df-rdg 7074  df-1o 7128  df-map 7420  df-nn 10538  df-n0 10797  df-coe1 18090
This theorem is referenced by:  coe1mul2  18178  ply1coe  18205  ply1coeOLD  18206  deg1ldg  22358  deg1leb  22361
  Copyright terms: Public domain W3C validator