MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvclss Structured version   Visualization version   Unicode version

Theorem fvclss 6147
Description: Upper bound for the class of values of a class. (Contributed by NM, 9-Nov-1995.)
Assertion
Ref Expression
fvclss  |-  { y  |  E. x  y  =  ( F `  x ) }  C_  ( ran  F  u.  { (/)
} )
Distinct variable group:    x, y, F

Proof of Theorem fvclss
StepHypRef Expression
1 eqcom 2458 . . . . . . . . . 10  |-  ( y  =  ( F `  x )  <->  ( F `  x )  =  y )
2 tz6.12i 5885 . . . . . . . . . 10  |-  ( y  =/=  (/)  ->  ( ( F `  x )  =  y  ->  x F y ) )
31, 2syl5bi 221 . . . . . . . . 9  |-  ( y  =/=  (/)  ->  ( y  =  ( F `  x )  ->  x F y ) )
43eximdv 1764 . . . . . . . 8  |-  ( y  =/=  (/)  ->  ( E. x  y  =  ( F `  x )  ->  E. x  x F y ) )
5 vex 3048 . . . . . . . . 9  |-  y  e. 
_V
65elrn 5075 . . . . . . . 8  |-  ( y  e.  ran  F  <->  E. x  x F y )
74, 6syl6ibr 231 . . . . . . 7  |-  ( y  =/=  (/)  ->  ( E. x  y  =  ( F `  x )  ->  y  e.  ran  F
) )
87com12 32 . . . . . 6  |-  ( E. x  y  =  ( F `  x )  ->  ( y  =/=  (/)  ->  y  e.  ran  F ) )
98necon1bd 2642 . . . . 5  |-  ( E. x  y  =  ( F `  x )  ->  ( -.  y  e.  ran  F  ->  y  =  (/) ) )
10 elsn 3982 . . . . 5  |-  ( y  e.  { (/) }  <->  y  =  (/) )
119, 10syl6ibr 231 . . . 4  |-  ( E. x  y  =  ( F `  x )  ->  ( -.  y  e.  ran  F  ->  y  e.  { (/) } ) )
1211orrd 380 . . 3  |-  ( E. x  y  =  ( F `  x )  ->  ( y  e. 
ran  F  \/  y  e.  { (/) } ) )
1312ss2abi 3501 . 2  |-  { y  |  E. x  y  =  ( F `  x ) }  C_  { y  |  ( y  e.  ran  F  \/  y  e.  { (/) } ) }
14 df-un 3409 . 2  |-  ( ran 
F  u.  { (/) } )  =  { y  |  ( y  e. 
ran  F  \/  y  e.  { (/) } ) }
1513, 14sseqtr4i 3465 1  |-  { y  |  E. x  y  =  ( F `  x ) }  C_  ( ran  F  u.  { (/)
} )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    \/ wo 370    = wceq 1444   E.wex 1663    e. wcel 1887   {cab 2437    =/= wne 2622    u. cun 3402    C_ wss 3404   (/)c0 3731   {csn 3968   class class class wbr 4402   ran crn 4835   ` cfv 5582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-sep 4525  ax-nul 4534  ax-pr 4639
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-rab 2746  df-v 3047  df-sbc 3268  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-sn 3969  df-pr 3971  df-op 3975  df-uni 4199  df-br 4403  df-opab 4462  df-cnv 4842  df-dm 4844  df-rn 4845  df-iota 5546  df-fv 5590
This theorem is referenced by:  fvclex  6765
  Copyright terms: Public domain W3C validator