MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvclss Structured version   Unicode version

Theorem fvclss 6142
Description: Upper bound for the class of values of a class. (Contributed by NM, 9-Nov-1995.)
Assertion
Ref Expression
fvclss  |-  { y  |  E. x  y  =  ( F `  x ) }  C_  ( ran  F  u.  { (/)
} )
Distinct variable group:    x, y, F

Proof of Theorem fvclss
StepHypRef Expression
1 eqcom 2476 . . . . . . . . . 10  |-  ( y  =  ( F `  x )  <->  ( F `  x )  =  y )
2 tz6.12i 5886 . . . . . . . . . 10  |-  ( y  =/=  (/)  ->  ( ( F `  x )  =  y  ->  x F y ) )
31, 2syl5bi 217 . . . . . . . . 9  |-  ( y  =/=  (/)  ->  ( y  =  ( F `  x )  ->  x F y ) )
43eximdv 1686 . . . . . . . 8  |-  ( y  =/=  (/)  ->  ( E. x  y  =  ( F `  x )  ->  E. x  x F y ) )
5 vex 3116 . . . . . . . . 9  |-  y  e. 
_V
65elrn 5243 . . . . . . . 8  |-  ( y  e.  ran  F  <->  E. x  x F y )
74, 6syl6ibr 227 . . . . . . 7  |-  ( y  =/=  (/)  ->  ( E. x  y  =  ( F `  x )  ->  y  e.  ran  F
) )
87com12 31 . . . . . 6  |-  ( E. x  y  =  ( F `  x )  ->  ( y  =/=  (/)  ->  y  e.  ran  F ) )
98necon1bd 2685 . . . . 5  |-  ( E. x  y  =  ( F `  x )  ->  ( -.  y  e.  ran  F  ->  y  =  (/) ) )
10 elsn 4041 . . . . 5  |-  ( y  e.  { (/) }  <->  y  =  (/) )
119, 10syl6ibr 227 . . . 4  |-  ( E. x  y  =  ( F `  x )  ->  ( -.  y  e.  ran  F  ->  y  e.  { (/) } ) )
1211orrd 378 . . 3  |-  ( E. x  y  =  ( F `  x )  ->  ( y  e. 
ran  F  \/  y  e.  { (/) } ) )
1312ss2abi 3572 . 2  |-  { y  |  E. x  y  =  ( F `  x ) }  C_  { y  |  ( y  e.  ran  F  \/  y  e.  { (/) } ) }
14 df-un 3481 . 2  |-  ( ran 
F  u.  { (/) } )  =  { y  |  ( y  e. 
ran  F  \/  y  e.  { (/) } ) }
1513, 14sseqtr4i 3537 1  |-  { y  |  E. x  y  =  ( F `  x ) }  C_  ( ran  F  u.  { (/)
} )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    \/ wo 368    = wceq 1379   E.wex 1596    e. wcel 1767   {cab 2452    =/= wne 2662    u. cun 3474    C_ wss 3476   (/)c0 3785   {csn 4027   class class class wbr 4447   ran crn 5000   ` cfv 5588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-cnv 5007  df-dm 5009  df-rn 5010  df-iota 5551  df-fv 5596
This theorem is referenced by:  fvclex  6756
  Copyright terms: Public domain W3C validator