MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fv3 Structured version   Unicode version

Theorem fv3 5807
Description: Alternate definition of the value of a function. Definition 6.11 of [TakeutiZaring] p. 26. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
fv3  |-  ( F `
 A )  =  { x  |  ( E. y ( x  e.  y  /\  A F y )  /\  E! y  A F
y ) }
Distinct variable groups:    x, y, F    x, A, y

Proof of Theorem fv3
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elfv 5792 . . 3  |-  ( x  e.  ( F `  A )  <->  E. z
( x  e.  z  /\  A. y ( A F y  <->  y  =  z ) ) )
2 bi2 198 . . . . . . . . . 10  |-  ( ( A F y  <->  y  =  z )  ->  (
y  =  z  ->  A F y ) )
32alimi 1605 . . . . . . . . 9  |-  ( A. y ( A F y  <->  y  =  z )  ->  A. y
( y  =  z  ->  A F y ) )
4 vex 3075 . . . . . . . . . 10  |-  z  e. 
_V
5 breq2 4399 . . . . . . . . . 10  |-  ( y  =  z  ->  ( A F y  <->  A F
z ) )
64, 5ceqsalv 3100 . . . . . . . . 9  |-  ( A. y ( y  =  z  ->  A F
y )  <->  A F
z )
73, 6sylib 196 . . . . . . . 8  |-  ( A. y ( A F y  <->  y  =  z )  ->  A F
z )
87anim2i 569 . . . . . . 7  |-  ( ( x  e.  z  /\  A. y ( A F y  <->  y  =  z ) )  ->  (
x  e.  z  /\  A F z ) )
98eximi 1626 . . . . . 6  |-  ( E. z ( x  e.  z  /\  A. y
( A F y  <-> 
y  =  z ) )  ->  E. z
( x  e.  z  /\  A F z ) )
10 elequ2 1763 . . . . . . . 8  |-  ( z  =  y  ->  (
x  e.  z  <->  x  e.  y ) )
11 breq2 4399 . . . . . . . 8  |-  ( z  =  y  ->  ( A F z  <->  A F
y ) )
1210, 11anbi12d 710 . . . . . . 7  |-  ( z  =  y  ->  (
( x  e.  z  /\  A F z )  <->  ( x  e.  y  /\  A F y ) ) )
1312cbvexv 1983 . . . . . 6  |-  ( E. z ( x  e.  z  /\  A F z )  <->  E. y
( x  e.  y  /\  A F y ) )
149, 13sylib 196 . . . . 5  |-  ( E. z ( x  e.  z  /\  A. y
( A F y  <-> 
y  =  z ) )  ->  E. y
( x  e.  y  /\  A F y ) )
15 exsimpr 1646 . . . . . 6  |-  ( E. z ( x  e.  z  /\  A. y
( A F y  <-> 
y  =  z ) )  ->  E. z A. y ( A F y  <->  y  =  z ) )
16 df-eu 2265 . . . . . 6  |-  ( E! y  A F y  <->  E. z A. y ( A F y  <->  y  =  z ) )
1715, 16sylibr 212 . . . . 5  |-  ( E. z ( x  e.  z  /\  A. y
( A F y  <-> 
y  =  z ) )  ->  E! y  A F y )
1814, 17jca 532 . . . 4  |-  ( E. z ( x  e.  z  /\  A. y
( A F y  <-> 
y  =  z ) )  ->  ( E. y ( x  e.  y  /\  A F y )  /\  E! y  A F y ) )
19 nfeu1 2274 . . . . . . 7  |-  F/ y E! y  A F y
20 nfv 1674 . . . . . . . . 9  |-  F/ y  x  e.  z
21 nfa1 1835 . . . . . . . . 9  |-  F/ y A. y ( A F y  <->  y  =  z )
2220, 21nfan 1865 . . . . . . . 8  |-  F/ y ( x  e.  z  /\  A. y ( A F y  <->  y  =  z ) )
2322nfex 1885 . . . . . . 7  |-  F/ y E. z ( x  e.  z  /\  A. y ( A F y  <->  y  =  z ) )
2419, 23nfim 1857 . . . . . 6  |-  F/ y ( E! y  A F y  ->  E. z
( x  e.  z  /\  A. y ( A F y  <->  y  =  z ) ) )
25 bi1 186 . . . . . . . . . . . . . 14  |-  ( ( A F y  <->  y  =  z )  ->  ( A F y  ->  y  =  z ) )
26 ax-9 1762 . . . . . . . . . . . . . 14  |-  ( y  =  z  ->  (
x  e.  y  ->  x  e.  z )
)
2725, 26syl6 33 . . . . . . . . . . . . 13  |-  ( ( A F y  <->  y  =  z )  ->  ( A F y  ->  (
x  e.  y  ->  x  e.  z )
) )
2827com23 78 . . . . . . . . . . . 12  |-  ( ( A F y  <->  y  =  z )  ->  (
x  e.  y  -> 
( A F y  ->  x  e.  z ) ) )
2928impd 431 . . . . . . . . . . 11  |-  ( ( A F y  <->  y  =  z )  ->  (
( x  e.  y  /\  A F y )  ->  x  e.  z ) )
3029sps 1804 . . . . . . . . . 10  |-  ( A. y ( A F y  <->  y  =  z )  ->  ( (
x  e.  y  /\  A F y )  ->  x  e.  z )
)
3130anc2ri 558 . . . . . . . . 9  |-  ( A. y ( A F y  <->  y  =  z )  ->  ( (
x  e.  y  /\  A F y )  -> 
( x  e.  z  /\  A. y ( A F y  <->  y  =  z ) ) ) )
3231com12 31 . . . . . . . 8  |-  ( ( x  e.  y  /\  A F y )  -> 
( A. y ( A F y  <->  y  =  z )  ->  (
x  e.  z  /\  A. y ( A F y  <->  y  =  z ) ) ) )
3332eximdv 1677 . . . . . . 7  |-  ( ( x  e.  y  /\  A F y )  -> 
( E. z A. y ( A F y  <->  y  =  z )  ->  E. z
( x  e.  z  /\  A. y ( A F y  <->  y  =  z ) ) ) )
3416, 33syl5bi 217 . . . . . 6  |-  ( ( x  e.  y  /\  A F y )  -> 
( E! y  A F y  ->  E. z
( x  e.  z  /\  A. y ( A F y  <->  y  =  z ) ) ) )
3524, 34exlimi 1849 . . . . 5  |-  ( E. y ( x  e.  y  /\  A F y )  ->  ( E! y  A F
y  ->  E. z
( x  e.  z  /\  A. y ( A F y  <->  y  =  z ) ) ) )
3635imp 429 . . . 4  |-  ( ( E. y ( x  e.  y  /\  A F y )  /\  E! y  A F
y )  ->  E. z
( x  e.  z  /\  A. y ( A F y  <->  y  =  z ) ) )
3718, 36impbii 188 . . 3  |-  ( E. z ( x  e.  z  /\  A. y
( A F y  <-> 
y  =  z ) )  <->  ( E. y
( x  e.  y  /\  A F y )  /\  E! y  A F y ) )
381, 37bitri 249 . 2  |-  ( x  e.  ( F `  A )  <->  ( E. y ( x  e.  y  /\  A F y )  /\  E! y  A F y ) )
3938abbi2i 2585 1  |-  ( F `
 A )  =  { x  |  ( E. y ( x  e.  y  /\  A F y )  /\  E! y  A F
y ) }
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1368    = wceq 1370   E.wex 1587    e. wcel 1758   E!weu 2261   {cab 2437   class class class wbr 4395   ` cfv 5521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2265  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-rex 2802  df-rab 2805  df-v 3074  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-nul 3741  df-if 3895  df-sn 3981  df-pr 3983  df-op 3987  df-uni 4195  df-br 4396  df-iota 5484  df-fv 5529
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator