Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fununiq Structured version   Unicode version

Theorem fununiq 29127
Description: The uniqueness condition of functions. (Contributed by Scott Fenton, 18-Feb-2013.)
Hypotheses
Ref Expression
fununiq.1  |-  A  e. 
_V
fununiq.2  |-  B  e. 
_V
fununiq.3  |-  C  e. 
_V
Assertion
Ref Expression
fununiq  |-  ( Fun 
F  ->  ( ( A F B  /\  A F C )  ->  B  =  C ) )

Proof of Theorem fununiq
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dffun2 5604 . 2  |-  ( Fun 
F  <->  ( Rel  F  /\  A. x A. y A. z ( ( x F y  /\  x F z )  -> 
y  =  z ) ) )
2 fununiq.1 . . . 4  |-  A  e. 
_V
3 fununiq.2 . . . 4  |-  B  e. 
_V
4 fununiq.3 . . . 4  |-  C  e. 
_V
5 breq12 4458 . . . . . . . 8  |-  ( ( x  =  A  /\  y  =  B )  ->  ( x F y  <-> 
A F B ) )
653adant3 1016 . . . . . . 7  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( x F y  <-> 
A F B ) )
7 breq12 4458 . . . . . . . 8  |-  ( ( x  =  A  /\  z  =  C )  ->  ( x F z  <-> 
A F C ) )
873adant2 1015 . . . . . . 7  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( x F z  <-> 
A F C ) )
96, 8anbi12d 710 . . . . . 6  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ( x F y  /\  x F z )  <->  ( A F B  /\  A F C ) ) )
10 eqeq12 2486 . . . . . . 7  |-  ( ( y  =  B  /\  z  =  C )  ->  ( y  =  z  <-> 
B  =  C ) )
11103adant1 1014 . . . . . 6  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( y  =  z  <-> 
B  =  C ) )
129, 11imbi12d 320 . . . . 5  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ( ( x F y  /\  x F z )  -> 
y  =  z )  <-> 
( ( A F B  /\  A F C )  ->  B  =  C ) ) )
1312spc3gv 3208 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  ->  ( A. x A. y A. z ( ( x F y  /\  x F z )  -> 
y  =  z )  ->  ( ( A F B  /\  A F C )  ->  B  =  C ) ) )
142, 3, 4, 13mp3an 1324 . . 3  |-  ( A. x A. y A. z
( ( x F y  /\  x F z )  ->  y  =  z )  -> 
( ( A F B  /\  A F C )  ->  B  =  C ) )
1514adantl 466 . 2  |-  ( ( Rel  F  /\  A. x A. y A. z
( ( x F y  /\  x F z )  ->  y  =  z ) )  ->  ( ( A F B  /\  A F C )  ->  B  =  C ) )
161, 15sylbi 195 1  |-  ( Fun 
F  ->  ( ( A F B  /\  A F C )  ->  B  =  C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973   A.wal 1377    = wceq 1379    e. wcel 1767   _Vcvv 3118   class class class wbr 4453   Rel wrel 5010   Fun wfun 5588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pr 4692
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rab 2826  df-v 3120  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-sn 4034  df-pr 4036  df-op 4040  df-br 4454  df-opab 4512  df-id 4801  df-cnv 5013  df-co 5014  df-fun 5596
This theorem is referenced by:  funbreq  29128
  Copyright terms: Public domain W3C validator