MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funun Structured version   Unicode version

Theorem funun 5621
Description: The union of functions with disjoint domains is a function. Theorem 4.6 of [Monk1] p. 43. (Contributed by NM, 12-Aug-1994.)
Assertion
Ref Expression
funun  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  ->  Fun  ( F  u.  G
) )

Proof of Theorem funun
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funrel 5596 . . . . 5  |-  ( Fun 
F  ->  Rel  F )
2 funrel 5596 . . . . 5  |-  ( Fun 
G  ->  Rel  G )
31, 2anim12i 566 . . . 4  |-  ( ( Fun  F  /\  Fun  G )  ->  ( Rel  F  /\  Rel  G ) )
4 relun 5110 . . . 4  |-  ( Rel  ( F  u.  G
)  <->  ( Rel  F  /\  Rel  G ) )
53, 4sylibr 212 . . 3  |-  ( ( Fun  F  /\  Fun  G )  ->  Rel  ( F  u.  G ) )
65adantr 465 . 2  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  ->  Rel  ( F  u.  G
) )
7 elun 3638 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  ( F  u.  G
)  <->  ( <. x ,  y >.  e.  F  \/  <. x ,  y
>.  e.  G ) )
8 elun 3638 . . . . . . . 8  |-  ( <.
x ,  z >.  e.  ( F  u.  G
)  <->  ( <. x ,  z >.  e.  F  \/  <. x ,  z
>.  e.  G ) )
97, 8anbi12i 697 . . . . . . 7  |-  ( (
<. x ,  y >.  e.  ( F  u.  G
)  /\  <. x ,  z >.  e.  ( F  u.  G )
)  <->  ( ( <.
x ,  y >.  e.  F  \/  <. x ,  y >.  e.  G
)  /\  ( <. x ,  z >.  e.  F  \/  <. x ,  z
>.  e.  G ) ) )
10 anddi 866 . . . . . . 7  |-  ( ( ( <. x ,  y
>.  e.  F  \/  <. x ,  y >.  e.  G
)  /\  ( <. x ,  z >.  e.  F  \/  <. x ,  z
>.  e.  G ) )  <-> 
( ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  G
) )  \/  (
( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
) ) ) )
119, 10bitri 249 . . . . . 6  |-  ( (
<. x ,  y >.  e.  ( F  u.  G
)  /\  <. x ,  z >.  e.  ( F  u.  G )
)  <->  ( ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  G
) )  \/  (
( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
) ) ) )
12 disj1 3862 . . . . . . . . . . . . 13  |-  ( ( dom  F  i^i  dom  G )  =  (/)  <->  A. x
( x  e.  dom  F  ->  -.  x  e.  dom  G ) )
1312biimpi 194 . . . . . . . . . . . 12  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  A. x
( x  e.  dom  F  ->  -.  x  e.  dom  G ) )
141319.21bi 1813 . . . . . . . . . . 11  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  (
x  e.  dom  F  ->  -.  x  e.  dom  G ) )
15 imnan 422 . . . . . . . . . . 11  |-  ( ( x  e.  dom  F  ->  -.  x  e.  dom  G )  <->  -.  ( x  e.  dom  F  /\  x  e.  dom  G ) )
1614, 15sylib 196 . . . . . . . . . 10  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  -.  ( x  e.  dom  F  /\  x  e.  dom  G ) )
17 vex 3109 . . . . . . . . . . . 12  |-  x  e. 
_V
18 vex 3109 . . . . . . . . . . . 12  |-  y  e. 
_V
1917, 18opeldm 5197 . . . . . . . . . . 11  |-  ( <.
x ,  y >.  e.  F  ->  x  e. 
dom  F )
20 vex 3109 . . . . . . . . . . . 12  |-  z  e. 
_V
2117, 20opeldm 5197 . . . . . . . . . . 11  |-  ( <.
x ,  z >.  e.  G  ->  x  e. 
dom  G )
2219, 21anim12i 566 . . . . . . . . . 10  |-  ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  G
)  ->  ( x  e.  dom  F  /\  x  e.  dom  G ) )
2316, 22nsyl 121 . . . . . . . . 9  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  -.  ( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  G
) )
24 orel2 383 . . . . . . . . 9  |-  ( -.  ( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  G
)  ->  ( (
( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  G
) )  ->  ( <. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
) ) )
2523, 24syl 16 . . . . . . . 8  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  (
( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  \/  ( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  G
) )  ->  ( <. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
) ) )
2614con2d 115 . . . . . . . . . . 11  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  (
x  e.  dom  G  ->  -.  x  e.  dom  F ) )
27 imnan 422 . . . . . . . . . . 11  |-  ( ( x  e.  dom  G  ->  -.  x  e.  dom  F )  <->  -.  ( x  e.  dom  G  /\  x  e.  dom  F ) )
2826, 27sylib 196 . . . . . . . . . 10  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  -.  ( x  e.  dom  G  /\  x  e.  dom  F ) )
2917, 18opeldm 5197 . . . . . . . . . . 11  |-  ( <.
x ,  y >.  e.  G  ->  x  e. 
dom  G )
3017, 20opeldm 5197 . . . . . . . . . . 11  |-  ( <.
x ,  z >.  e.  F  ->  x  e. 
dom  F )
3129, 30anim12i 566 . . . . . . . . . 10  |-  ( (
<. x ,  y >.  e.  G  /\  <. x ,  z >.  e.  F
)  ->  ( x  e.  dom  G  /\  x  e.  dom  F ) )
3228, 31nsyl 121 . . . . . . . . 9  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  -.  ( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  F
) )
33 orel1 382 . . . . . . . . 9  |-  ( -.  ( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  F
)  ->  ( (
( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
) )  ->  ( <. x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
) ) )
3432, 33syl 16 . . . . . . . 8  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  (
( ( <. x ,  y >.  e.  G  /\  <. x ,  z
>.  e.  F )  \/  ( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  G
) )  ->  ( <. x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
) ) )
3525, 34orim12d 835 . . . . . . 7  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  (
( ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  G
) )  \/  (
( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
) ) )  -> 
( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  \/  ( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  G
) ) ) )
3635adantl 466 . . . . . 6  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( ( ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  G
) )  \/  (
( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
) ) )  -> 
( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  \/  ( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  G
) ) ) )
3711, 36syl5bi 217 . . . . 5  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( ( <. x ,  y >.  e.  ( F  u.  G )  /\  <. x ,  z
>.  e.  ( F  u.  G ) )  -> 
( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  \/  ( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  G
) ) ) )
38 dffun4 5591 . . . . . . . . . 10  |-  ( Fun 
F  <->  ( Rel  F  /\  A. x A. y A. z ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z ) ) )
3938simprbi 464 . . . . . . . . 9  |-  ( Fun 
F  ->  A. x A. y A. z ( ( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z ) )
403919.21bi 1813 . . . . . . . 8  |-  ( Fun 
F  ->  A. y A. z ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z ) )
414019.21bbi 1903 . . . . . . 7  |-  ( Fun 
F  ->  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z ) )
42 dffun4 5591 . . . . . . . . . 10  |-  ( Fun 
G  <->  ( Rel  G  /\  A. x A. y A. z ( ( <.
x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
)  ->  y  =  z ) ) )
4342simprbi 464 . . . . . . . . 9  |-  ( Fun 
G  ->  A. x A. y A. z ( ( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  G
)  ->  y  =  z ) )
444319.21bi 1813 . . . . . . . 8  |-  ( Fun 
G  ->  A. y A. z ( ( <.
x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
)  ->  y  =  z ) )
454419.21bbi 1903 . . . . . . 7  |-  ( Fun 
G  ->  ( ( <. x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
)  ->  y  =  z ) )
4641, 45jaao 509 . . . . . 6  |-  ( ( Fun  F  /\  Fun  G )  ->  ( (
( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
) )  ->  y  =  z ) )
4746adantr 465 . . . . 5  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
) )  ->  y  =  z ) )
4837, 47syld 44 . . . 4  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( ( <. x ,  y >.  e.  ( F  u.  G )  /\  <. x ,  z
>.  e.  ( F  u.  G ) )  -> 
y  =  z ) )
4948alrimiv 1690 . . 3  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  ->  A. z ( ( <.
x ,  y >.  e.  ( F  u.  G
)  /\  <. x ,  z >.  e.  ( F  u.  G )
)  ->  y  =  z ) )
5049alrimivv 1691 . 2  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  ->  A. x A. y A. z ( ( <.
x ,  y >.  e.  ( F  u.  G
)  /\  <. x ,  z >.  e.  ( F  u.  G )
)  ->  y  =  z ) )
51 dffun4 5591 . 2  |-  ( Fun  ( F  u.  G
)  <->  ( Rel  ( F  u.  G )  /\  A. x A. y A. z ( ( <.
x ,  y >.  e.  ( F  u.  G
)  /\  <. x ,  z >.  e.  ( F  u.  G )
)  ->  y  =  z ) ) )
526, 50, 51sylanbrc 664 1  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  ->  Fun  ( F  u.  G
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 368    /\ wa 369   A.wal 1372    = wceq 1374    e. wcel 1762    u. cun 3467    i^i cin 3468   (/)c0 3778   <.cop 4026   dom cdm 4992   Rel wrel 4997   Fun wfun 5573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pr 4679
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rab 2816  df-v 3108  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-sn 4021  df-pr 4023  df-op 4027  df-br 4441  df-opab 4499  df-id 4788  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-fun 5581
This theorem is referenced by:  funprg  5628  funtpg  5629  funtp  5631  fnun  5678  fvun  5928  tfrlem10  7046  sbthlem7  7623  sbthlem8  7624  fodomr  7658  funsnfsupp  7842  axdc3lem4  8822  strlemor1  14571  strleun  14574  wfrlem13  28918  bnj1421  33052
  Copyright terms: Public domain W3C validator