MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funssxp Structured version   Unicode version

Theorem funssxp 5750
Description: Two ways of specifying a partial function from  A to  B. (Contributed by NM, 13-Nov-2007.)
Assertion
Ref Expression
funssxp  |-  ( ( Fun  F  /\  F  C_  ( A  X.  B
) )  <->  ( F : dom  F --> B  /\  dom  F  C_  A )
)

Proof of Theorem funssxp
StepHypRef Expression
1 funfn 5623 . . . . . 6  |-  ( Fun 
F  <->  F  Fn  dom  F )
21biimpi 194 . . . . 5  |-  ( Fun 
F  ->  F  Fn  dom  F )
3 rnss 5237 . . . . . 6  |-  ( F 
C_  ( A  X.  B )  ->  ran  F 
C_  ran  ( A  X.  B ) )
4 rnxpss 5445 . . . . . 6  |-  ran  ( A  X.  B )  C_  B
53, 4syl6ss 3521 . . . . 5  |-  ( F 
C_  ( A  X.  B )  ->  ran  F 
C_  B )
62, 5anim12i 566 . . . 4  |-  ( ( Fun  F  /\  F  C_  ( A  X.  B
) )  ->  ( F  Fn  dom  F  /\  ran  F  C_  B )
)
7 df-f 5598 . . . 4  |-  ( F : dom  F --> B  <->  ( F  Fn  dom  F  /\  ran  F 
C_  B ) )
86, 7sylibr 212 . . 3  |-  ( ( Fun  F  /\  F  C_  ( A  X.  B
) )  ->  F : dom  F --> B )
9 dmss 5208 . . . . 5  |-  ( F 
C_  ( A  X.  B )  ->  dom  F 
C_  dom  ( A  X.  B ) )
10 dmxpss 5444 . . . . 5  |-  dom  ( A  X.  B )  C_  A
119, 10syl6ss 3521 . . . 4  |-  ( F 
C_  ( A  X.  B )  ->  dom  F 
C_  A )
1211adantl 466 . . 3  |-  ( ( Fun  F  /\  F  C_  ( A  X.  B
) )  ->  dom  F 
C_  A )
138, 12jca 532 . 2  |-  ( ( Fun  F  /\  F  C_  ( A  X.  B
) )  ->  ( F : dom  F --> B  /\  dom  F  C_  A )
)
14 ffun 5739 . . . 4  |-  ( F : dom  F --> B  ->  Fun  F )
1514adantr 465 . . 3  |-  ( ( F : dom  F --> B  /\  dom  F  C_  A )  ->  Fun  F )
16 fssxp 5749 . . . 4  |-  ( F : dom  F --> B  ->  F  C_  ( dom  F  X.  B ) )
17 xpss1 5117 . . . 4  |-  ( dom 
F  C_  A  ->  ( dom  F  X.  B
)  C_  ( A  X.  B ) )
1816, 17sylan9ss 3522 . . 3  |-  ( ( F : dom  F --> B  /\  dom  F  C_  A )  ->  F  C_  ( A  X.  B
) )
1915, 18jca 532 . 2  |-  ( ( F : dom  F --> B  /\  dom  F  C_  A )  ->  ( Fun  F  /\  F  C_  ( A  X.  B
) ) )
2013, 19impbii 188 1  |-  ( ( Fun  F  /\  F  C_  ( A  X.  B
) )  <->  ( F : dom  F --> B  /\  dom  F  C_  A )
)
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    C_ wss 3481    X. cxp 5003   dom cdm 5005   ran crn 5006   Fun wfun 5588    Fn wfn 5589   -->wf 5590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pr 4692
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-sn 4034  df-pr 4036  df-op 4040  df-br 4454  df-opab 4512  df-xp 5011  df-rel 5012  df-cnv 5013  df-dm 5015  df-rn 5016  df-fun 5596  df-fn 5597  df-f 5598
This theorem is referenced by:  elpm2g  7447  volf  21808
  Copyright terms: Public domain W3C validator