MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funsssuppss Structured version   Unicode version

Theorem funsssuppss 6918
Description: The support of a function which is a subset of another function is a subset of the support of this other function. (Contributed by AV, 27-Jul-2019.)
Assertion
Ref Expression
funsssuppss  |-  ( ( Fun  G  /\  F  C_  G  /\  G  e.  V )  ->  ( F supp  Z )  C_  ( G supp  Z ) )

Proof of Theorem funsssuppss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 funss 5588 . . . . . . . . . 10  |-  ( F 
C_  G  ->  ( Fun  G  ->  Fun  F ) )
21impcom 428 . . . . . . . . 9  |-  ( ( Fun  G  /\  F  C_  G )  ->  Fun  F )
3 funfn 5599 . . . . . . . . . 10  |-  ( Fun 
F  <->  F  Fn  dom  F )
43biimpi 194 . . . . . . . . 9  |-  ( Fun 
F  ->  F  Fn  dom  F )
52, 4syl 16 . . . . . . . 8  |-  ( ( Fun  G  /\  F  C_  G )  ->  F  Fn  dom  F )
6 funfn 5599 . . . . . . . . . 10  |-  ( Fun 
G  <->  G  Fn  dom  G )
76biimpi 194 . . . . . . . . 9  |-  ( Fun 
G  ->  G  Fn  dom  G )
87adantr 463 . . . . . . . 8  |-  ( ( Fun  G  /\  F  C_  G )  ->  G  Fn  dom  G )
95, 8jca 530 . . . . . . 7  |-  ( ( Fun  G  /\  F  C_  G )  ->  ( F  Fn  dom  F  /\  G  Fn  dom  G ) )
1093adant3 1014 . . . . . 6  |-  ( ( Fun  G  /\  F  C_  G  /\  G  e.  V )  ->  ( F  Fn  dom  F  /\  G  Fn  dom  G ) )
1110adantr 463 . . . . 5  |-  ( ( ( Fun  G  /\  F  C_  G  /\  G  e.  V )  /\  Z  e.  _V )  ->  ( F  Fn  dom  F  /\  G  Fn  dom  G ) )
12 dmss 5191 . . . . . . . 8  |-  ( F 
C_  G  ->  dom  F 
C_  dom  G )
13123ad2ant2 1016 . . . . . . 7  |-  ( ( Fun  G  /\  F  C_  G  /\  G  e.  V )  ->  dom  F 
C_  dom  G )
1413adantr 463 . . . . . 6  |-  ( ( ( Fun  G  /\  F  C_  G  /\  G  e.  V )  /\  Z  e.  _V )  ->  dom  F 
C_  dom  G )
15 dmexg 6704 . . . . . . . 8  |-  ( G  e.  V  ->  dom  G  e.  _V )
16153ad2ant3 1017 . . . . . . 7  |-  ( ( Fun  G  /\  F  C_  G  /\  G  e.  V )  ->  dom  G  e.  _V )
1716adantr 463 . . . . . 6  |-  ( ( ( Fun  G  /\  F  C_  G  /\  G  e.  V )  /\  Z  e.  _V )  ->  dom  G  e.  _V )
18 simpr 459 . . . . . 6  |-  ( ( ( Fun  G  /\  F  C_  G  /\  G  e.  V )  /\  Z  e.  _V )  ->  Z  e.  _V )
1914, 17, 183jca 1174 . . . . 5  |-  ( ( ( Fun  G  /\  F  C_  G  /\  G  e.  V )  /\  Z  e.  _V )  ->  ( dom  F  C_  dom  G  /\  dom  G  e.  _V  /\  Z  e.  _V )
)
2011, 19jca 530 . . . 4  |-  ( ( ( Fun  G  /\  F  C_  G  /\  G  e.  V )  /\  Z  e.  _V )  ->  (
( F  Fn  dom  F  /\  G  Fn  dom  G )  /\  ( dom 
F  C_  dom  G  /\  dom  G  e.  _V  /\  Z  e.  _V )
) )
21 funssfv 5863 . . . . . . . . 9  |-  ( ( Fun  G  /\  F  C_  G  /\  x  e. 
dom  F )  -> 
( G `  x
)  =  ( F `
 x ) )
22213expa 1194 . . . . . . . 8  |-  ( ( ( Fun  G  /\  F  C_  G )  /\  x  e.  dom  F )  ->  ( G `  x )  =  ( F `  x ) )
23 eqeq1 2458 . . . . . . . . 9  |-  ( ( G `  x )  =  ( F `  x )  ->  (
( G `  x
)  =  Z  <->  ( F `  x )  =  Z ) )
2423biimpd 207 . . . . . . . 8  |-  ( ( G `  x )  =  ( F `  x )  ->  (
( G `  x
)  =  Z  -> 
( F `  x
)  =  Z ) )
2522, 24syl 16 . . . . . . 7  |-  ( ( ( Fun  G  /\  F  C_  G )  /\  x  e.  dom  F )  ->  ( ( G `
 x )  =  Z  ->  ( F `  x )  =  Z ) )
2625ralrimiva 2868 . . . . . 6  |-  ( ( Fun  G  /\  F  C_  G )  ->  A. x  e.  dom  F ( ( G `  x )  =  Z  ->  ( F `  x )  =  Z ) )
27263adant3 1014 . . . . 5  |-  ( ( Fun  G  /\  F  C_  G  /\  G  e.  V )  ->  A. x  e.  dom  F ( ( G `  x )  =  Z  ->  ( F `  x )  =  Z ) )
2827adantr 463 . . . 4  |-  ( ( ( Fun  G  /\  F  C_  G  /\  G  e.  V )  /\  Z  e.  _V )  ->  A. x  e.  dom  F ( ( G `  x )  =  Z  ->  ( F `  x )  =  Z ) )
29 suppfnss 6917 . . . 4  |-  ( ( ( F  Fn  dom  F  /\  G  Fn  dom  G )  /\  ( dom 
F  C_  dom  G  /\  dom  G  e.  _V  /\  Z  e.  _V )
)  ->  ( A. x  e.  dom  F ( ( G `  x
)  =  Z  -> 
( F `  x
)  =  Z )  ->  ( F supp  Z
)  C_  ( G supp  Z ) ) )
3020, 28, 29sylc 60 . . 3  |-  ( ( ( Fun  G  /\  F  C_  G  /\  G  e.  V )  /\  Z  e.  _V )  ->  ( F supp  Z )  C_  ( G supp  Z ) )
3130expcom 433 . 2  |-  ( Z  e.  _V  ->  (
( Fun  G  /\  F  C_  G  /\  G  e.  V )  ->  ( F supp  Z )  C_  ( G supp  Z ) ) )
32 ssid 3508 . . . 4  |-  (/)  C_  (/)
33 simpr 459 . . . . . . 7  |-  ( ( F  e.  _V  /\  Z  e.  _V )  ->  Z  e.  _V )
3433con3i 135 . . . . . 6  |-  ( -.  Z  e.  _V  ->  -.  ( F  e.  _V  /\  Z  e.  _V )
)
35 supp0prc 6894 . . . . . 6  |-  ( -.  ( F  e.  _V  /\  Z  e.  _V )  ->  ( F supp  Z )  =  (/) )
3634, 35syl 16 . . . . 5  |-  ( -.  Z  e.  _V  ->  ( F supp  Z )  =  (/) )
37 simpr 459 . . . . . . 7  |-  ( ( G  e.  _V  /\  Z  e.  _V )  ->  Z  e.  _V )
3837con3i 135 . . . . . 6  |-  ( -.  Z  e.  _V  ->  -.  ( G  e.  _V  /\  Z  e.  _V )
)
39 supp0prc 6894 . . . . . 6  |-  ( -.  ( G  e.  _V  /\  Z  e.  _V )  ->  ( G supp  Z )  =  (/) )
4038, 39syl 16 . . . . 5  |-  ( -.  Z  e.  _V  ->  ( G supp  Z )  =  (/) )
4136, 40sseq12d 3518 . . . 4  |-  ( -.  Z  e.  _V  ->  ( ( F supp  Z ) 
C_  ( G supp  Z
)  <->  (/)  C_  (/) ) )
4232, 41mpbiri 233 . . 3  |-  ( -.  Z  e.  _V  ->  ( F supp  Z )  C_  ( G supp  Z )
)
4342a1d 25 . 2  |-  ( -.  Z  e.  _V  ->  ( ( Fun  G  /\  F  C_  G  /\  G  e.  V )  ->  ( F supp  Z )  C_  ( G supp  Z ) ) )
4431, 43pm2.61i 164 1  |-  ( ( Fun  G  /\  F  C_  G  /\  G  e.  V )  ->  ( F supp  Z )  C_  ( G supp  Z ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823   A.wral 2804   _Vcvv 3106    C_ wss 3461   (/)c0 3783   dom cdm 4988   Fun wfun 5564    Fn wfn 5565   ` cfv 5570  (class class class)co 6270   supp csupp 6891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-supp 6892
This theorem is referenced by:  tdeglem4  22624
  Copyright terms: Public domain W3C validator