Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funpartlem Structured version   Visualization version   Unicode version

Theorem funpartlem 30780
Description: Lemma for funpartfun 30781. Show membership in the restriction. (Contributed by Scott Fenton, 4-Dec-2017.)
Assertion
Ref Expression
funpartlem  |-  ( A  e.  dom  ( (Image
F  o. Singleton )  i^i  ( _V  X.  Singletons ) )  <->  E. x
( F " { A } )  =  {
x } )
Distinct variable groups:    x, A    x, F

Proof of Theorem funpartlem
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3040 . 2  |-  ( A  e.  dom  ( (Image
F  o. Singleton )  i^i  ( _V  X.  Singletons ) )  ->  A  e.  _V )
2 ssnid 3989 . . . . 5  |-  x  e. 
{ x }
3 eleq2 2538 . . . . 5  |-  ( ( F " { A } )  =  {
x }  ->  (
x  e.  ( F
" { A }
)  <->  x  e.  { x } ) )
42, 3mpbiri 241 . . . 4  |-  ( ( F " { A } )  =  {
x }  ->  x  e.  ( F " { A } ) )
5 n0i 3727 . . . . 5  |-  ( x  e.  ( F " { A } )  ->  -.  ( F " { A } )  =  (/) )
6 snprc 4027 . . . . . . . 8  |-  ( -.  A  e.  _V  <->  { A }  =  (/) )
76biimpi 199 . . . . . . 7  |-  ( -.  A  e.  _V  ->  { A }  =  (/) )
87imaeq2d 5174 . . . . . 6  |-  ( -.  A  e.  _V  ->  ( F " { A } )  =  ( F " (/) ) )
9 ima0 5189 . . . . . 6  |-  ( F
" (/) )  =  (/)
108, 9syl6eq 2521 . . . . 5  |-  ( -.  A  e.  _V  ->  ( F " { A } )  =  (/) )
115, 10nsyl2 132 . . . 4  |-  ( x  e.  ( F " { A } )  ->  A  e.  _V )
124, 11syl 17 . . 3  |-  ( ( F " { A } )  =  {
x }  ->  A  e.  _V )
1312exlimiv 1784 . 2  |-  ( E. x ( F " { A } )  =  { x }  ->  A  e.  _V )
14 eleq1 2537 . . 3  |-  ( y  =  A  ->  (
y  e.  dom  (
(Image F  o. Singleton )  i^i  ( _V  X.  Singletons ) )  <->  A  e.  dom  ( (Image F  o. Singleton )  i^i  ( _V  X.  Singletons ) ) ) )
15 sneq 3969 . . . . . 6  |-  ( y  =  A  ->  { y }  =  { A } )
1615imaeq2d 5174 . . . . 5  |-  ( y  =  A  ->  ( F " { y } )  =  ( F
" { A }
) )
1716eqeq1d 2473 . . . 4  |-  ( y  =  A  ->  (
( F " {
y } )  =  { x }  <->  ( F " { A } )  =  { x }
) )
1817exbidv 1776 . . 3  |-  ( y  =  A  ->  ( E. x ( F " { y } )  =  { x }  <->  E. x ( F " { A } )  =  { x } ) )
19 vex 3034 . . . . 5  |-  y  e. 
_V
2019eldm 5037 . . . 4  |-  ( y  e.  dom  ( (Image
F  o. Singleton )  i^i  ( _V  X.  Singletons ) )  <->  E. z 
y ( (Image F  o. Singleton )  i^i  ( _V 
X.  Singletons ) ) z )
21 brxp 4870 . . . . . . . . . 10  |-  ( y ( _V  X.  Singletons ) z  <->  ( y  e.  _V  /\  z  e.  Singletons
) )
2219, 21mpbiran 932 . . . . . . . . 9  |-  ( y ( _V  X.  Singletons ) z  <->  z  e.  Singletons )
23 elsingles 30756 . . . . . . . . 9  |-  ( z  e.  Singletons 
<->  E. x  z  =  { x } )
2422, 23bitri 257 . . . . . . . 8  |-  ( y ( _V  X.  Singletons ) z  <->  E. x  z  =  { x } )
2524anbi2i 708 . . . . . . 7  |-  ( ( y (Image F  o. Singleton ) z  /\  y ( _V  X.  Singletons ) z )  <-> 
( y (Image F  o. Singleton ) z  /\  E. x  z  =  {
x } ) )
26 brin 4445 . . . . . . 7  |-  ( y ( (Image F  o. Singleton )  i^i  ( _V  X.  Singletons ) ) z  <->  ( y
(Image F  o. Singleton ) z  /\  y ( _V 
X.  Singletons ) z ) )
27 19.42v 1842 . . . . . . 7  |-  ( E. x ( y (Image
F  o. Singleton ) z  /\  z  =  { x } )  <->  ( y
(Image F  o. Singleton ) z  /\  E. x  z  =  { x }
) )
2825, 26, 273bitr4i 285 . . . . . 6  |-  ( y ( (Image F  o. Singleton )  i^i  ( _V  X.  Singletons ) ) z  <->  E. x
( y (Image F  o. Singleton ) z  /\  z  =  { x } ) )
2928exbii 1726 . . . . 5  |-  ( E. z  y ( (Image
F  o. Singleton )  i^i  ( _V  X.  Singletons ) ) z  <->  E. z E. x ( y (Image F  o. Singleton ) z  /\  z  =  { x } ) )
30 excom 1944 . . . . 5  |-  ( E. z E. x ( y (Image F  o. Singleton ) z  /\  z  =  { x } )  <->  E. x E. z ( y (Image F  o. Singleton ) z  /\  z  =  { x } ) )
3129, 30bitri 257 . . . 4  |-  ( E. z  y ( (Image
F  o. Singleton )  i^i  ( _V  X.  Singletons ) ) z  <->  E. x E. z ( y (Image F  o. Singleton ) z  /\  z  =  { x } ) )
32 exancom 1730 . . . . . 6  |-  ( E. z ( y (Image
F  o. Singleton ) z  /\  z  =  { x } )  <->  E. z
( z  =  {
x }  /\  y
(Image F  o. Singleton ) z ) )
33 snex 4641 . . . . . . 7  |-  { x }  e.  _V
34 breq2 4399 . . . . . . 7  |-  ( z  =  { x }  ->  ( y (Image F  o. Singleton ) z  <->  y (Image F  o. Singleton ) { x } ) )
3533, 34ceqsexv 3070 . . . . . 6  |-  ( E. z ( z  =  { x }  /\  y (Image F  o. Singleton ) z )  <->  y (Image F  o. Singleton ) { x }
)
3619, 33brco 5010 . . . . . . 7  |-  ( y (Image F  o. Singleton ) { x }  <->  E. z
( ySingleton z  /\  zImage F { x } ) )
37 vex 3034 . . . . . . . . . 10  |-  z  e. 
_V
3819, 37brsingle 30755 . . . . . . . . 9  |-  ( ySingleton
z  <->  z  =  {
y } )
3938anbi1i 709 . . . . . . . 8  |-  ( ( ySingleton z  /\  zImage F { x } )  <-> 
( z  =  {
y }  /\  zImage F { x } ) )
4039exbii 1726 . . . . . . 7  |-  ( E. z ( ySingleton z  /\  zImage F { x } )  <->  E. z
( z  =  {
y }  /\  zImage F { x } ) )
41 snex 4641 . . . . . . . . 9  |-  { y }  e.  _V
42 breq1 4398 . . . . . . . . 9  |-  ( z  =  { y }  ->  ( zImage F { x }  <->  { y }Image F { x }
) )
4341, 42ceqsexv 3070 . . . . . . . 8  |-  ( E. z ( z  =  { y }  /\  zImage F { x }
)  <->  { y }Image F { x } )
4441, 33brimage 30764 . . . . . . . 8  |-  ( { y }Image F {
x }  <->  { x }  =  ( F " { y } ) )
45 eqcom 2478 . . . . . . . 8  |-  ( { x }  =  ( F " { y } )  <->  ( F " { y } )  =  { x }
)
4643, 44, 453bitri 279 . . . . . . 7  |-  ( E. z ( z  =  { y }  /\  zImage F { x }
)  <->  ( F " { y } )  =  { x }
)
4736, 40, 463bitri 279 . . . . . 6  |-  ( y (Image F  o. Singleton ) { x }  <->  ( F " { y } )  =  { x }
)
4832, 35, 473bitri 279 . . . . 5  |-  ( E. z ( y (Image
F  o. Singleton ) z  /\  z  =  { x } )  <->  ( F " { y } )  =  { x }
)
4948exbii 1726 . . . 4  |-  ( E. x E. z ( y (Image F  o. Singleton ) z  /\  z  =  { x } )  <->  E. x ( F " { y } )  =  { x }
)
5020, 31, 493bitri 279 . . 3  |-  ( y  e.  dom  ( (Image
F  o. Singleton )  i^i  ( _V  X.  Singletons ) )  <->  E. x
( F " {
y } )  =  { x } )
5114, 18, 50vtoclbg 3094 . 2  |-  ( A  e.  _V  ->  ( A  e.  dom  ( (Image
F  o. Singleton )  i^i  ( _V  X.  Singletons ) )  <->  E. x
( F " { A } )  =  {
x } ) )
521, 13, 51pm5.21nii 360 1  |-  ( A  e.  dom  ( (Image
F  o. Singleton )  i^i  ( _V  X.  Singletons ) )  <->  E. x
( F " { A } )  =  {
x } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 189    /\ wa 376    = wceq 1452   E.wex 1671    e. wcel 1904   _Vcvv 3031    i^i cin 3389   (/)c0 3722   {csn 3959   class class class wbr 4395    X. cxp 4837   dom cdm 4839   "cima 4842    o. ccom 4843  Singletoncsingle 30675   Singletonscsingles 30676  Imagecimage 30677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-sbc 3256  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-symdif 3654  df-nul 3723  df-if 3873  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-br 4396  df-opab 4455  df-mpt 4456  df-eprel 4750  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-fo 5595  df-fv 5597  df-1st 6812  df-2nd 6813  df-txp 30691  df-singleton 30699  df-singles 30700  df-image 30701
This theorem is referenced by:  funpartfun  30781  funpartfv  30783
  Copyright terms: Public domain W3C validator