Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funpartlem Structured version   Unicode version

Theorem funpartlem 29155
Description: Lemma for funpartfun 29156. Show membership in the restriction. (Contributed by Scott Fenton, 4-Dec-2017.)
Assertion
Ref Expression
funpartlem  |-  ( A  e.  dom  ( (Image
F  o. Singleton )  i^i  ( _V  X.  Singletons ) )  <->  E. x
( F " { A } )  =  {
x } )
Distinct variable groups:    x, A    x, F

Proof of Theorem funpartlem
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3115 . 2  |-  ( A  e.  dom  ( (Image
F  o. Singleton )  i^i  ( _V  X.  Singletons ) )  ->  A  e.  _V )
2 ssnid 4049 . . . . 5  |-  x  e. 
{ x }
3 eleq2 2533 . . . . 5  |-  ( ( F " { A } )  =  {
x }  ->  (
x  e.  ( F
" { A }
)  <->  x  e.  { x } ) )
42, 3mpbiri 233 . . . 4  |-  ( ( F " { A } )  =  {
x }  ->  x  e.  ( F " { A } ) )
5 n0i 3783 . . . . 5  |-  ( x  e.  ( F " { A } )  ->  -.  ( F " { A } )  =  (/) )
6 snprc 4084 . . . . . . . 8  |-  ( -.  A  e.  _V  <->  { A }  =  (/) )
76biimpi 194 . . . . . . 7  |-  ( -.  A  e.  _V  ->  { A }  =  (/) )
87imaeq2d 5328 . . . . . 6  |-  ( -.  A  e.  _V  ->  ( F " { A } )  =  ( F " (/) ) )
9 ima0 5343 . . . . . 6  |-  ( F
" (/) )  =  (/)
108, 9syl6eq 2517 . . . . 5  |-  ( -.  A  e.  _V  ->  ( F " { A } )  =  (/) )
115, 10nsyl2 127 . . . 4  |-  ( x  e.  ( F " { A } )  ->  A  e.  _V )
124, 11syl 16 . . 3  |-  ( ( F " { A } )  =  {
x }  ->  A  e.  _V )
1312exlimiv 1693 . 2  |-  ( E. x ( F " { A } )  =  { x }  ->  A  e.  _V )
14 eleq1 2532 . . 3  |-  ( y  =  A  ->  (
y  e.  dom  (
(Image F  o. Singleton )  i^i  ( _V  X.  Singletons ) )  <->  A  e.  dom  ( (Image F  o. Singleton )  i^i  ( _V  X.  Singletons ) ) ) )
15 sneq 4030 . . . . . 6  |-  ( y  =  A  ->  { y }  =  { A } )
1615imaeq2d 5328 . . . . 5  |-  ( y  =  A  ->  ( F " { y } )  =  ( F
" { A }
) )
1716eqeq1d 2462 . . . 4  |-  ( y  =  A  ->  (
( F " {
y } )  =  { x }  <->  ( F " { A } )  =  { x }
) )
1817exbidv 1685 . . 3  |-  ( y  =  A  ->  ( E. x ( F " { y } )  =  { x }  <->  E. x ( F " { A } )  =  { x } ) )
19 vex 3109 . . . . 5  |-  y  e. 
_V
2019eldm 5191 . . . 4  |-  ( y  e.  dom  ( (Image
F  o. Singleton )  i^i  ( _V  X.  Singletons ) )  <->  E. z 
y ( (Image F  o. Singleton )  i^i  ( _V 
X.  Singletons ) ) z )
21 brxp 5022 . . . . . . . . . 10  |-  ( y ( _V  X.  Singletons ) z  <->  ( y  e.  _V  /\  z  e.  Singletons
) )
2219, 21mpbiran 911 . . . . . . . . 9  |-  ( y ( _V  X.  Singletons ) z  <->  z  e.  Singletons )
23 elsingles 29131 . . . . . . . . 9  |-  ( z  e.  Singletons 
<->  E. x  z  =  { x } )
2422, 23bitri 249 . . . . . . . 8  |-  ( y ( _V  X.  Singletons ) z  <->  E. x  z  =  { x } )
2524anbi2i 694 . . . . . . 7  |-  ( ( y (Image F  o. Singleton ) z  /\  y ( _V  X.  Singletons ) z )  <-> 
( y (Image F  o. Singleton ) z  /\  E. x  z  =  {
x } ) )
26 brin 4489 . . . . . . 7  |-  ( y ( (Image F  o. Singleton )  i^i  ( _V  X.  Singletons ) ) z  <->  ( y
(Image F  o. Singleton ) z  /\  y ( _V 
X.  Singletons ) z ) )
27 19.42v 1942 . . . . . . 7  |-  ( E. x ( y (Image
F  o. Singleton ) z  /\  z  =  { x } )  <->  ( y
(Image F  o. Singleton ) z  /\  E. x  z  =  { x }
) )
2825, 26, 273bitr4i 277 . . . . . 6  |-  ( y ( (Image F  o. Singleton )  i^i  ( _V  X.  Singletons ) ) z  <->  E. x
( y (Image F  o. Singleton ) z  /\  z  =  { x } ) )
2928exbii 1639 . . . . 5  |-  ( E. z  y ( (Image
F  o. Singleton )  i^i  ( _V  X.  Singletons ) ) z  <->  E. z E. x ( y (Image F  o. Singleton ) z  /\  z  =  { x } ) )
30 excom 1793 . . . . 5  |-  ( E. z E. x ( y (Image F  o. Singleton ) z  /\  z  =  { x } )  <->  E. x E. z ( y (Image F  o. Singleton ) z  /\  z  =  { x } ) )
3129, 30bitri 249 . . . 4  |-  ( E. z  y ( (Image
F  o. Singleton )  i^i  ( _V  X.  Singletons ) ) z  <->  E. x E. z ( y (Image F  o. Singleton ) z  /\  z  =  { x } ) )
32 exancom 1643 . . . . . 6  |-  ( E. z ( y (Image
F  o. Singleton ) z  /\  z  =  { x } )  <->  E. z
( z  =  {
x }  /\  y
(Image F  o. Singleton ) z ) )
33 snex 4681 . . . . . . 7  |-  { x }  e.  _V
34 breq2 4444 . . . . . . 7  |-  ( z  =  { x }  ->  ( y (Image F  o. Singleton ) z  <->  y (Image F  o. Singleton ) { x } ) )
3533, 34ceqsexv 3143 . . . . . 6  |-  ( E. z ( z  =  { x }  /\  y (Image F  o. Singleton ) z )  <->  y (Image F  o. Singleton ) { x }
)
3619, 33brco 5164 . . . . . . 7  |-  ( y (Image F  o. Singleton ) { x }  <->  E. z
( ySingleton z  /\  zImage F { x } ) )
37 vex 3109 . . . . . . . . . 10  |-  z  e. 
_V
3819, 37brsingle 29130 . . . . . . . . 9  |-  ( ySingleton
z  <->  z  =  {
y } )
3938anbi1i 695 . . . . . . . 8  |-  ( ( ySingleton z  /\  zImage F { x } )  <-> 
( z  =  {
y }  /\  zImage F { x } ) )
4039exbii 1639 . . . . . . 7  |-  ( E. z ( ySingleton z  /\  zImage F { x } )  <->  E. z
( z  =  {
y }  /\  zImage F { x } ) )
41 snex 4681 . . . . . . . . 9  |-  { y }  e.  _V
42 breq1 4443 . . . . . . . . 9  |-  ( z  =  { y }  ->  ( zImage F { x }  <->  { y }Image F { x }
) )
4341, 42ceqsexv 3143 . . . . . . . 8  |-  ( E. z ( z  =  { y }  /\  zImage F { x }
)  <->  { y }Image F { x } )
4441, 33brimage 29139 . . . . . . . 8  |-  ( { y }Image F {
x }  <->  { x }  =  ( F " { y } ) )
45 eqcom 2469 . . . . . . . 8  |-  ( { x }  =  ( F " { y } )  <->  ( F " { y } )  =  { x }
)
4643, 44, 453bitri 271 . . . . . . 7  |-  ( E. z ( z  =  { y }  /\  zImage F { x }
)  <->  ( F " { y } )  =  { x }
)
4736, 40, 463bitri 271 . . . . . 6  |-  ( y (Image F  o. Singleton ) { x }  <->  ( F " { y } )  =  { x }
)
4832, 35, 473bitri 271 . . . . 5  |-  ( E. z ( y (Image
F  o. Singleton ) z  /\  z  =  { x } )  <->  ( F " { y } )  =  { x }
)
4948exbii 1639 . . . 4  |-  ( E. x E. z ( y (Image F  o. Singleton ) z  /\  z  =  { x } )  <->  E. x ( F " { y } )  =  { x }
)
5020, 31, 493bitri 271 . . 3  |-  ( y  e.  dom  ( (Image
F  o. Singleton )  i^i  ( _V  X.  Singletons ) )  <->  E. x
( F " {
y } )  =  { x } )
5114, 18, 50vtoclbg 3165 . 2  |-  ( A  e.  _V  ->  ( A  e.  dom  ( (Image
F  o. Singleton )  i^i  ( _V  X.  Singletons ) )  <->  E. x
( F " { A } )  =  {
x } ) )
521, 13, 51pm5.21nii 353 1  |-  ( A  e.  dom  ( (Image
F  o. Singleton )  i^i  ( _V  X.  Singletons ) )  <->  E. x
( F " { A } )  =  {
x } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 184    /\ wa 369    = wceq 1374   E.wex 1591    e. wcel 1762   _Vcvv 3106    i^i cin 3468   (/)c0 3778   {csn 4020   class class class wbr 4440    X. cxp 4990   dom cdm 4992   "cima 4995    o. ccom 4996  Singletoncsingle 29050   Singletonscsingles 29051  Imagecimage 29052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3108  df-sbc 3325  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-br 4441  df-opab 4499  df-mpt 4500  df-eprel 4784  df-id 4788  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-fo 5585  df-fv 5587  df-1st 6774  df-2nd 6775  df-symdif 29031  df-txp 29066  df-singleton 29074  df-singles 29075  df-image 29076
This theorem is referenced by:  funpartfun  29156  funpartfv  29158
  Copyright terms: Public domain W3C validator