MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funoprabg Structured version   Unicode version

Theorem funoprabg 6384
Description: "At most one" is a sufficient condition for an operation class abstraction to be a function. (Contributed by NM, 28-Aug-2007.)
Assertion
Ref Expression
funoprabg  |-  ( A. x A. y E* z ph  ->  Fun  { <. <. x ,  y >. ,  z
>.  |  ph } )
Distinct variable group:    x, y, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem funoprabg
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 mosubopt 4690 . . 3  |-  ( A. x A. y E* z ph  ->  E* z E. x E. y ( w  =  <. x ,  y >.  /\  ph ) )
21alrimiv 1742 . 2  |-  ( A. x A. y E* z ph  ->  A. w E* z E. x E. y ( w  =  <. x ,  y >.  /\  ph ) )
3 dfoprab2 6326 . . . 4  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ph ) }
43funeqi 5591 . . 3  |-  ( Fun 
{ <. <. x ,  y
>. ,  z >.  | 
ph }  <->  Fun  { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ph ) } )
5 funopab 5604 . . 3  |-  ( Fun 
{ <. w ,  z
>.  |  E. x E. y ( w  = 
<. x ,  y >.  /\  ph ) }  <->  A. w E* z E. x E. y ( w  = 
<. x ,  y >.  /\  ph ) )
64, 5bitr2i 252 . 2  |-  ( A. w E* z E. x E. y ( w  = 
<. x ,  y >.  /\  ph )  <->  Fun  { <. <.
x ,  y >. ,  z >.  |  ph } )
72, 6sylib 198 1  |-  ( A. x A. y E* z ph  ->  Fun  { <. <. x ,  y >. ,  z
>.  |  ph } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369   A.wal 1405    = wceq 1407   E.wex 1635   E*wmo 2241   <.cop 3980   {copab 4454   Fun wfun 5565   {coprab 6281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-sep 4519  ax-nul 4527  ax-pr 4632
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3063  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3741  df-if 3888  df-sn 3975  df-pr 3977  df-op 3981  df-br 4398  df-opab 4456  df-id 4740  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-fun 5573  df-oprab 6284
This theorem is referenced by:  funoprab  6385  fnoprabg  6386  oprabexd  6773
  Copyright terms: Public domain W3C validator