Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  funoprabg Structured version   Unicode version

Theorem funoprabg 6292
 Description: "At most one" is a sufficient condition for an operation class abstraction to be a function. (Contributed by NM, 28-Aug-2007.)
Assertion
Ref Expression
funoprabg
Distinct variable group:   ,,
Allowed substitution hints:   (,,)

Proof of Theorem funoprabg
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 mosubopt 4690 . . 3
21alrimiv 1686 . 2
3 dfoprab2 6235 . . . 4
43funeqi 5539 . . 3
5 funopab 5552 . . 3
64, 5bitr2i 250 . 2
72, 6sylib 196 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 369  wal 1368   wceq 1370  wex 1587  wmo 2261  cop 3984  copab 4450   wfun 5513  coprab 6194 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4514  ax-nul 4522  ax-pr 4632 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-rab 2804  df-v 3073  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-nul 3739  df-if 3893  df-sn 3979  df-pr 3981  df-op 3985  df-br 4394  df-opab 4452  df-id 4737  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-fun 5521  df-oprab 6197 This theorem is referenced by:  funoprab  6293  fnoprabg  6294  oprabexd  6667
 Copyright terms: Public domain W3C validator