MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funoprab Structured version   Unicode version

Theorem funoprab 6377
Description: "At most one" is a sufficient condition for an operation class abstraction to be a function. (Contributed by NM, 17-Mar-1995.)
Hypothesis
Ref Expression
funoprab.1  |-  E* z ph
Assertion
Ref Expression
funoprab  |-  Fun  { <. <. x ,  y
>. ,  z >.  | 
ph }
Distinct variable group:    x, y, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem funoprab
StepHypRef Expression
1 funoprab.1 . . 3  |-  E* z ph
21gen2 1597 . 2  |-  A. x A. y E* z ph
3 funoprabg 6376 . 2  |-  ( A. x A. y E* z ph  ->  Fun  { <. <. x ,  y >. ,  z
>.  |  ph } )
42, 3ax-mp 5 1  |-  Fun  { <. <. x ,  y
>. ,  z >.  | 
ph }
Colors of variables: wff setvar class
Syntax hints:   A.wal 1372   E*wmo 2269   Fun wfun 5573   {coprab 6276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pr 4679
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3108  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-sn 4021  df-pr 4023  df-op 4027  df-br 4441  df-opab 4499  df-id 4788  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-fun 5581  df-oprab 6279
This theorem is referenced by:  mpt2fun  6379  ovidig  6395  ovigg  6398  oprabex  6762  axaddf  9511  axmulf  9512  funtransport  29244  funray  29353  funline  29355
  Copyright terms: Public domain W3C validator