MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funiunfv Structured version   Visualization version   Unicode version

Theorem funiunfv 6171
Description: The indexed union of a function's values is the union of its image under the index class.

Note: This theorem depends on the fact that our function value is the empty set outside of its domain. If the antecedent is changed to  F  Fn  A, the theorem can be proved without this dependency. (Contributed by NM, 26-Mar-2006.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)

Assertion
Ref Expression
funiunfv  |-  ( Fun 
F  ->  U_ x  e.  A  ( F `  x )  =  U. ( F " A ) )
Distinct variable groups:    x, A    x, F

Proof of Theorem funiunfv
StepHypRef Expression
1 funres 5628 . . . 4  |-  ( Fun 
F  ->  Fun  ( F  |`  A ) )
2 funfn 5618 . . . 4  |-  ( Fun  ( F  |`  A )  <-> 
( F  |`  A )  Fn  dom  ( F  |`  A ) )
31, 2sylib 201 . . 3  |-  ( Fun 
F  ->  ( F  |`  A )  Fn  dom  ( F  |`  A ) )
4 fniunfv 6170 . . 3  |-  ( ( F  |`  A )  Fn  dom  ( F  |`  A )  ->  U_ x  e.  dom  ( F  |`  A ) ( ( F  |`  A ) `  x )  =  U. ran  ( F  |`  A ) )
53, 4syl 17 . 2  |-  ( Fun 
F  ->  U_ x  e. 
dom  ( F  |`  A ) ( ( F  |`  A ) `  x )  =  U. ran  ( F  |`  A ) )
6 undif2 3834 . . . . 5  |-  ( dom  ( F  |`  A )  u.  ( A  \  dom  ( F  |`  A ) ) )  =  ( dom  ( F  |`  A )  u.  A
)
7 dmres 5131 . . . . . . 7  |-  dom  ( F  |`  A )  =  ( A  i^i  dom  F )
8 inss1 3643 . . . . . . 7  |-  ( A  i^i  dom  F )  C_  A
97, 8eqsstri 3448 . . . . . 6  |-  dom  ( F  |`  A )  C_  A
10 ssequn1 3595 . . . . . 6  |-  ( dom  ( F  |`  A ) 
C_  A  <->  ( dom  ( F  |`  A )  u.  A )  =  A )
119, 10mpbi 213 . . . . 5  |-  ( dom  ( F  |`  A )  u.  A )  =  A
126, 11eqtri 2493 . . . 4  |-  ( dom  ( F  |`  A )  u.  ( A  \  dom  ( F  |`  A ) ) )  =  A
13 iuneq1 4283 . . . 4  |-  ( ( dom  ( F  |`  A )  u.  ( A  \  dom  ( F  |`  A ) ) )  =  A  ->  U_ x  e.  ( dom  ( F  |`  A )  u.  ( A  \  dom  ( F  |`  A ) ) ) ( ( F  |`  A ) `  x
)  =  U_ x  e.  A  ( ( F  |`  A ) `  x ) )
1412, 13ax-mp 5 . . 3  |-  U_ x  e.  ( dom  ( F  |`  A )  u.  ( A  \  dom  ( F  |`  A ) ) ) ( ( F  |`  A ) `  x
)  =  U_ x  e.  A  ( ( F  |`  A ) `  x )
15 iunxun 4354 . . . 4  |-  U_ x  e.  ( dom  ( F  |`  A )  u.  ( A  \  dom  ( F  |`  A ) ) ) ( ( F  |`  A ) `  x
)  =  ( U_ x  e.  dom  ( F  |`  A ) ( ( F  |`  A ) `  x )  u.  U_ x  e.  ( A  \  dom  ( F  |`  A ) ) ( ( F  |`  A ) `
 x ) )
16 eldifn 3545 . . . . . . . . 9  |-  ( x  e.  ( A  \  dom  ( F  |`  A ) )  ->  -.  x  e.  dom  ( F  |`  A ) )
17 ndmfv 5903 . . . . . . . . 9  |-  ( -.  x  e.  dom  ( F  |`  A )  -> 
( ( F  |`  A ) `  x
)  =  (/) )
1816, 17syl 17 . . . . . . . 8  |-  ( x  e.  ( A  \  dom  ( F  |`  A ) )  ->  ( ( F  |`  A ) `  x )  =  (/) )
1918iuneq2i 4288 . . . . . . 7  |-  U_ x  e.  ( A  \  dom  ( F  |`  A ) ) ( ( F  |`  A ) `  x
)  =  U_ x  e.  ( A  \  dom  ( F  |`  A ) ) (/)
20 iun0 4325 . . . . . . 7  |-  U_ x  e.  ( A  \  dom  ( F  |`  A ) ) (/)  =  (/)
2119, 20eqtri 2493 . . . . . 6  |-  U_ x  e.  ( A  \  dom  ( F  |`  A ) ) ( ( F  |`  A ) `  x
)  =  (/)
2221uneq2i 3576 . . . . 5  |-  ( U_ x  e.  dom  ( F  |`  A ) ( ( F  |`  A ) `  x )  u.  U_ x  e.  ( A  \  dom  ( F  |`  A ) ) ( ( F  |`  A ) `
 x ) )  =  ( U_ x  e.  dom  ( F  |`  A ) ( ( F  |`  A ) `  x )  u.  (/) )
23 un0 3762 . . . . 5  |-  ( U_ x  e.  dom  ( F  |`  A ) ( ( F  |`  A ) `  x )  u.  (/) )  = 
U_ x  e.  dom  ( F  |`  A ) ( ( F  |`  A ) `  x
)
2422, 23eqtri 2493 . . . 4  |-  ( U_ x  e.  dom  ( F  |`  A ) ( ( F  |`  A ) `  x )  u.  U_ x  e.  ( A  \  dom  ( F  |`  A ) ) ( ( F  |`  A ) `
 x ) )  =  U_ x  e. 
dom  ( F  |`  A ) ( ( F  |`  A ) `  x )
2515, 24eqtri 2493 . . 3  |-  U_ x  e.  ( dom  ( F  |`  A )  u.  ( A  \  dom  ( F  |`  A ) ) ) ( ( F  |`  A ) `  x
)  =  U_ x  e.  dom  ( F  |`  A ) ( ( F  |`  A ) `  x )
26 fvres 5893 . . . 4  |-  ( x  e.  A  ->  (
( F  |`  A ) `
 x )  =  ( F `  x
) )
2726iuneq2i 4288 . . 3  |-  U_ x  e.  A  ( ( F  |`  A ) `  x )  =  U_ x  e.  A  ( F `  x )
2814, 25, 273eqtr3ri 2502 . 2  |-  U_ x  e.  A  ( F `  x )  =  U_ x  e.  dom  ( F  |`  A ) ( ( F  |`  A ) `  x )
29 df-ima 4852 . . 3  |-  ( F
" A )  =  ran  ( F  |`  A )
3029unieqi 4199 . 2  |-  U. ( F " A )  = 
U. ran  ( F  |`  A )
315, 28, 303eqtr4g 2530 1  |-  ( Fun 
F  ->  U_ x  e.  A  ( F `  x )  =  U. ( F " A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1452    e. wcel 1904    \ cdif 3387    u. cun 3388    i^i cin 3389    C_ wss 3390   (/)c0 3722   U.cuni 4190   U_ciun 4269   dom cdm 4839   ran crn 4840    |` cres 4841   "cima 4842   Fun wfun 5583    Fn wfn 5584   ` cfv 5589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-sbc 3256  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5553  df-fun 5591  df-fn 5592  df-fv 5597
This theorem is referenced by:  funiunfvf  6172  eluniima  6173  marypha2lem4  7970  r1limg  8260  r1elssi  8294  r1elss  8295  ackbij2  8691  r1om  8692  ttukeylem6  8962  isacs2  15637  mreacs  15642  acsfn  15643  isacs5  16496  dprdss  17740  dprd2dlem1  17752  dmdprdsplit2lem  17756  uniioombllem3a  22621  uniioombllem4  22623  uniioombllem5  22624  dyadmbl  22637  mblfinlem1  32041  ovoliunnfl  32046  voliunnfl  32048
  Copyright terms: Public domain W3C validator