MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funin Structured version   Unicode version

Theorem funin 5506
Description: The intersection with a function is a function. Exercise 14(a) of [Enderton] p. 53. (Contributed by NM, 19-Mar-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
funin  |-  ( Fun 
F  ->  Fun  ( F  i^i  G ) )

Proof of Theorem funin
StepHypRef Expression
1 inss1 3591 . 2  |-  ( F  i^i  G )  C_  F
2 funss 5457 . 2  |-  ( ( F  i^i  G ) 
C_  F  ->  ( Fun  F  ->  Fun  ( F  i^i  G ) ) )
31, 2ax-mp 5 1  |-  ( Fun 
F  ->  Fun  ( F  i^i  G ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    i^i cin 3348    C_ wss 3349   Fun wfun 5433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-v 2995  df-in 3356  df-ss 3363  df-br 4314  df-opab 4372  df-rel 4868  df-cnv 4869  df-co 4870  df-fun 5441
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator