MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funin Unicode version

Theorem funin 5176
Description: The intersection with a function is a function. Exercise 14(a) of [Enderton] p. 53. (Contributed by NM, 19-Mar-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
funin  |-  ( Fun 
F  ->  Fun  ( F  i^i  G ) )

Proof of Theorem funin
StepHypRef Expression
1 inss1 3296 . 2  |-  ( F  i^i  G )  C_  F
2 funss 5131 . 2  |-  ( ( F  i^i  G ) 
C_  F  ->  ( Fun  F  ->  Fun  ( F  i^i  G ) ) )
31, 2ax-mp 10 1  |-  ( Fun 
F  ->  Fun  ( F  i^i  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    i^i cin 3077    C_ wss 3078   Fun wfun 4586
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-v 2729  df-in 3085  df-ss 3089  df-br 3921  df-opab 3975  df-rel 4595  df-cnv 4596  df-co 4597  df-fun 4602
  Copyright terms: Public domain W3C validator