MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funimassov Structured version   Unicode version

Theorem funimassov 6240
Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Mario Carneiro, 23-Dec-2013.)
Assertion
Ref Expression
funimassov  |-  ( ( Fun  F  /\  ( A  X.  B )  C_  dom  F )  ->  (
( F " ( A  X.  B ) ) 
C_  C  <->  A. x  e.  A  A. y  e.  B  ( x F y )  e.  C ) )
Distinct variable groups:    x, y, A    x, B, y    x, C, y    x, F, y

Proof of Theorem funimassov
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 funimass4 5742 . 2  |-  ( ( Fun  F  /\  ( A  X.  B )  C_  dom  F )  ->  (
( F " ( A  X.  B ) ) 
C_  C  <->  A. z  e.  ( A  X.  B
) ( F `  z )  e.  C
) )
2 fveq2 5691 . . . . 5  |-  ( z  =  <. x ,  y
>.  ->  ( F `  z )  =  ( F `  <. x ,  y >. )
)
3 df-ov 6094 . . . . 5  |-  ( x F y )  =  ( F `  <. x ,  y >. )
42, 3syl6eqr 2493 . . . 4  |-  ( z  =  <. x ,  y
>.  ->  ( F `  z )  =  ( x F y ) )
54eleq1d 2509 . . 3  |-  ( z  =  <. x ,  y
>.  ->  ( ( F `
 z )  e.  C  <->  ( x F y )  e.  C
) )
65ralxp 4981 . 2  |-  ( A. z  e.  ( A  X.  B ) ( F `
 z )  e.  C  <->  A. x  e.  A  A. y  e.  B  ( x F y )  e.  C )
71, 6syl6bb 261 1  |-  ( ( Fun  F  /\  ( A  X.  B )  C_  dom  F )  ->  (
( F " ( A  X.  B ) ) 
C_  C  <->  A. x  e.  A  A. y  e.  B  ( x F y )  e.  C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2715    C_ wss 3328   <.cop 3883    X. cxp 4838   dom cdm 4840   "cima 4843   Fun wfun 5412   ` cfv 5418  (class class class)co 6091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pr 4531
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-sn 3878  df-pr 3880  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-id 4636  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-fv 5426  df-ov 6094
This theorem is referenced by:  dprd2da  16541  xkococnlem  19232  iscfil2  20777  itg1addlem4  21177  issh2  24611  cvmlift2lem9  27200
  Copyright terms: Public domain W3C validator