MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funimass4 Structured version   Unicode version

Theorem funimass4 5869
Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Raph Levien, 20-Nov-2006.)
Assertion
Ref Expression
funimass4  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( ( F " A )  C_  B  <->  A. x  e.  A  ( F `  x )  e.  B ) )
Distinct variable groups:    x, A    x, B    x, F

Proof of Theorem funimass4
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfss2 3389 . . 3  |-  ( ( F " A ) 
C_  B  <->  A. y
( y  e.  ( F " A )  ->  y  e.  B
) )
2 eqcom 2429 . . . . . . . . . 10  |-  ( y  =  ( F `  x )  <->  ( F `  x )  =  y )
3 ssel 3394 . . . . . . . . . . . 12  |-  ( A 
C_  dom  F  ->  ( x  e.  A  ->  x  e.  dom  F ) )
4 funbrfvb 5860 . . . . . . . . . . . . 13  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( ( F `  x )  =  y  <-> 
x F y ) )
54ex 435 . . . . . . . . . . . 12  |-  ( Fun 
F  ->  ( x  e.  dom  F  ->  (
( F `  x
)  =  y  <->  x F
y ) ) )
63, 5syl9 73 . . . . . . . . . . 11  |-  ( A 
C_  dom  F  ->  ( Fun  F  ->  (
x  e.  A  -> 
( ( F `  x )  =  y  <-> 
x F y ) ) ) )
76imp31 433 . . . . . . . . . 10  |-  ( ( ( A  C_  dom  F  /\  Fun  F )  /\  x  e.  A
)  ->  ( ( F `  x )  =  y  <->  x F y ) )
82, 7syl5bb 260 . . . . . . . . 9  |-  ( ( ( A  C_  dom  F  /\  Fun  F )  /\  x  e.  A
)  ->  ( y  =  ( F `  x )  <->  x F
y ) )
98rexbidva 2869 . . . . . . . 8  |-  ( ( A  C_  dom  F  /\  Fun  F )  ->  ( E. x  e.  A  y  =  ( F `  x )  <->  E. x  e.  A  x F
y ) )
10 vex 3019 . . . . . . . . 9  |-  y  e. 
_V
1110elima 5128 . . . . . . . 8  |-  ( y  e.  ( F " A )  <->  E. x  e.  A  x F
y )
129, 11syl6rbbr 267 . . . . . . 7  |-  ( ( A  C_  dom  F  /\  Fun  F )  ->  (
y  e.  ( F
" A )  <->  E. x  e.  A  y  =  ( F `  x ) ) )
1312imbi1d 318 . . . . . 6  |-  ( ( A  C_  dom  F  /\  Fun  F )  ->  (
( y  e.  ( F " A )  ->  y  e.  B
)  <->  ( E. x  e.  A  y  =  ( F `  x )  ->  y  e.  B
) ) )
14 r19.23v 2838 . . . . . 6  |-  ( A. x  e.  A  (
y  =  ( F `
 x )  -> 
y  e.  B )  <-> 
( E. x  e.  A  y  =  ( F `  x )  ->  y  e.  B
) )
1513, 14syl6bbr 266 . . . . 5  |-  ( ( A  C_  dom  F  /\  Fun  F )  ->  (
( y  e.  ( F " A )  ->  y  e.  B
)  <->  A. x  e.  A  ( y  =  ( F `  x )  ->  y  e.  B
) ) )
1615albidv 1761 . . . 4  |-  ( ( A  C_  dom  F  /\  Fun  F )  ->  ( A. y ( y  e.  ( F " A
)  ->  y  e.  B )  <->  A. y A. x  e.  A  ( y  =  ( F `  x )  ->  y  e.  B
) ) )
17 ralcom4 3036 . . . . 5  |-  ( A. x  e.  A  A. y ( y  =  ( F `  x
)  ->  y  e.  B )  <->  A. y A. x  e.  A  ( y  =  ( F `  x )  ->  y  e.  B
) )
18 fvex 5828 . . . . . . 7  |-  ( F `
 x )  e. 
_V
19 eleq1 2488 . . . . . . 7  |-  ( y  =  ( F `  x )  ->  (
y  e.  B  <->  ( F `  x )  e.  B
) )
2018, 19ceqsalv 3045 . . . . . 6  |-  ( A. y ( y  =  ( F `  x
)  ->  y  e.  B )  <->  ( F `  x )  e.  B
)
2120ralbii 2790 . . . . 5  |-  ( A. x  e.  A  A. y ( y  =  ( F `  x
)  ->  y  e.  B )  <->  A. x  e.  A  ( F `  x )  e.  B
)
2217, 21bitr3i 254 . . . 4  |-  ( A. y A. x  e.  A  ( y  =  ( F `  x )  ->  y  e.  B
)  <->  A. x  e.  A  ( F `  x )  e.  B )
2316, 22syl6bb 264 . . 3  |-  ( ( A  C_  dom  F  /\  Fun  F )  ->  ( A. y ( y  e.  ( F " A
)  ->  y  e.  B )  <->  A. x  e.  A  ( F `  x )  e.  B
) )
241, 23syl5bb 260 . 2  |-  ( ( A  C_  dom  F  /\  Fun  F )  ->  (
( F " A
)  C_  B  <->  A. x  e.  A  ( F `  x )  e.  B
) )
2524ancoms 454 1  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( ( F " A )  C_  B  <->  A. x  e.  A  ( F `  x )  e.  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370   A.wal 1435    = wceq 1437    e. wcel 1872   A.wral 2708   E.wrex 2709    C_ wss 3372   class class class wbr 4359   dom cdm 4789   "cima 4792   Fun wfun 5531   ` cfv 5537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2058  ax-ext 2402  ax-sep 4482  ax-nul 4491  ax-pr 4596
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2274  df-mo 2275  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2552  df-ne 2595  df-ral 2713  df-rex 2714  df-rab 2717  df-v 3018  df-sbc 3236  df-dif 3375  df-un 3377  df-in 3379  df-ss 3386  df-nul 3698  df-if 3848  df-sn 3935  df-pr 3937  df-op 3941  df-uni 4156  df-br 4360  df-opab 4419  df-id 4704  df-xp 4795  df-rel 4796  df-cnv 4797  df-co 4798  df-dm 4799  df-rn 4800  df-res 4801  df-ima 4802  df-iota 5501  df-fun 5539  df-fn 5540  df-fv 5545
This theorem is referenced by:  funimass3  5950  funimass5  5951  funconstss  5952  funimassov  6397  fnwelem  6859  cnfcomlem  8149  dfac12lem2  8518  ackbij1b  8613  wunom  9089  phimullem  14663  frmdss2  16583  cntzmhm2  16929  dprd2da  17611  frlmsslsp  19289  1stckgenlem  20503  txcnp  20570  ptcnplem  20571  xkopt  20605  xkoinjcn  20637  tgqtop  20662  uzrest  20847  cnflf2  20953  lmflf  20955  txflf  20956  cnextcn  21017  ghmcnp  21064  ucnima  21231  metcnp  21491  tchcph  22146  ovolficcss  22357  opnmbllem  22494  ellimc2  22767  ellimc3  22769  deg1n0ima  22973  dvloglem  23528  logf1o2  23530  dchrghm  24119  usgrares1  25073  xrofsup  28296  eulerpartlemd  29144  erdszelem2  29860  cvmlift3lem7  29993  mclsax  30152  filnetlem4  30979  poimir  31874  opnmbllem0  31877  cnres2  31996  icccncfext  37642
  Copyright terms: Public domain W3C validator