MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funimaexg Unicode version

Theorem funimaexg 5186
Description: Axiom of Replacement using abbreviations. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 10-Sep-2006.)
Assertion
Ref Expression
funimaexg  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A " B )  e. 
_V )

Proof of Theorem funimaexg
StepHypRef Expression
1 imaeq2 4915 . . . . 5  |-  ( w  =  B  ->  ( A " w )  =  ( A " B
) )
21eleq1d 2319 . . . 4  |-  ( w  =  B  ->  (
( A " w
)  e.  _V  <->  ( A " B )  e.  _V ) )
32imbi2d 309 . . 3  |-  ( w  =  B  ->  (
( Fun  A  ->  ( A " w )  e.  _V )  <->  ( Fun  A  ->  ( A " B )  e.  _V ) ) )
4 dffun5 5126 . . . . 5  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x E. z A. y ( <. x ,  y >.  e.  A  ->  y  =  z ) ) )
54simprbi 452 . . . 4  |-  ( Fun 
A  ->  A. x E. z A. y (
<. x ,  y >.  e.  A  ->  y  =  z ) )
6 nfv 1629 . . . . . 6  |-  F/ z
<. x ,  y >.  e.  A
76axrep4 4032 . . . . 5  |-  ( A. x E. z A. y
( <. x ,  y
>.  e.  A  ->  y  =  z )  ->  E. z A. y ( y  e.  z  <->  E. x
( x  e.  w  /\  <. x ,  y
>.  e.  A ) ) )
8 isset 2731 . . . . . 6  |-  ( ( A " w )  e.  _V  <->  E. z 
z  =  ( A
" w ) )
9 dfima3 4922 . . . . . . . . 9  |-  ( A
" w )  =  { y  |  E. x ( x  e.  w  /\  <. x ,  y >.  e.  A
) }
109eqeq2i 2263 . . . . . . . 8  |-  ( z  =  ( A "
w )  <->  z  =  { y  |  E. x ( x  e.  w  /\  <. x ,  y >.  e.  A
) } )
11 abeq2 2354 . . . . . . . 8  |-  ( z  =  { y  |  E. x ( x  e.  w  /\  <. x ,  y >.  e.  A
) }  <->  A. y
( y  e.  z  <->  E. x ( x  e.  w  /\  <. x ,  y >.  e.  A
) ) )
1210, 11bitri 242 . . . . . . 7  |-  ( z  =  ( A "
w )  <->  A. y
( y  e.  z  <->  E. x ( x  e.  w  /\  <. x ,  y >.  e.  A
) ) )
1312exbii 1580 . . . . . 6  |-  ( E. z  z  =  ( A " w )  <->  E. z A. y ( y  e.  z  <->  E. x
( x  e.  w  /\  <. x ,  y
>.  e.  A ) ) )
148, 13bitri 242 . . . . 5  |-  ( ( A " w )  e.  _V  <->  E. z A. y ( y  e.  z  <->  E. x ( x  e.  w  /\  <. x ,  y >.  e.  A
) ) )
157, 14sylibr 205 . . . 4  |-  ( A. x E. z A. y
( <. x ,  y
>.  e.  A  ->  y  =  z )  -> 
( A " w
)  e.  _V )
165, 15syl 17 . . 3  |-  ( Fun 
A  ->  ( A " w )  e.  _V )
173, 16vtoclg 2781 . 2  |-  ( B  e.  C  ->  ( Fun  A  ->  ( A " B )  e.  _V ) )
1817impcom 421 1  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A " B )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360   A.wal 1532   E.wex 1537    = wceq 1619    e. wcel 1621   {cab 2239   _Vcvv 2727   <.cop 3547   "cima 4583   Rel wrel 4585   Fun wfun 4586
This theorem is referenced by:  funimaex  5187  resfunexg  5589  resfunexgALT  5590  fnexALT  5594  wdomimag  7185  carduniima  7607  dfac12lem2  7654  ttukeylem3  8022  nnexALT  9628  seqex  10926  fbasrn  17411  elfm3  17477  axfelem1  23514
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pr 4108
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-sn 3550  df-pr 3551  df-op 3553  df-br 3921  df-opab 3975  df-id 4202  df-xp 4594  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602
  Copyright terms: Public domain W3C validator