![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funi | Structured version Visualization version Unicode version |
Description: The identity relation is a function. Part of Theorem 10.4 of [Quine] p. 65. (Contributed by NM, 30-Apr-1998.) |
Ref | Expression |
---|---|
funi |
![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reli 4984 |
. 2
![]() ![]() ![]() | |
2 | relcnv 5229 |
. . . . 5
![]() ![]() ![]() ![]() | |
3 | coi2 5375 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | ax-mp 5 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | cnvi 5262 |
. . . 4
![]() ![]() ![]() ![]() ![]() | |
6 | 4, 5 | eqtri 2484 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 6 | eqimssi 3498 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | df-fun 5607 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
9 | 1, 7, 8 | mpbir2an 936 |
1
![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1680 ax-4 1693 ax-5 1769 ax-6 1816 ax-7 1862 ax-9 1907 ax-10 1926 ax-11 1931 ax-12 1944 ax-13 2102 ax-ext 2442 ax-sep 4541 ax-nul 4550 ax-pr 4656 |
This theorem depends on definitions: df-bi 190 df-or 376 df-an 377 df-3an 993 df-tru 1458 df-ex 1675 df-nf 1679 df-sb 1809 df-eu 2314 df-mo 2315 df-clab 2449 df-cleq 2455 df-clel 2458 df-nfc 2592 df-ne 2635 df-ral 2754 df-rex 2755 df-rab 2758 df-v 3059 df-dif 3419 df-un 3421 df-in 3423 df-ss 3430 df-nul 3744 df-if 3894 df-sn 3981 df-pr 3983 df-op 3987 df-br 4419 df-opab 4478 df-id 4771 df-xp 4862 df-rel 4863 df-cnv 4864 df-co 4865 df-fun 5607 |
This theorem is referenced by: cnvresid 5679 fnresi 5719 fvi 5950 resiexd 6161 ssdomg 7646 tendo02 34400 residfi 39177 usgresvm1 40124 usgresvm1ALT 40128 |
Copyright terms: Public domain | W3C validator |