MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funfvima2 Structured version   Unicode version

Theorem funfvima2 6133
Description: A function's value in an included preimage belongs to the image. (Contributed by NM, 3-Feb-1997.)
Assertion
Ref Expression
funfvima2  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( B  e.  A  ->  ( F `  B
)  e.  ( F
" A ) ) )

Proof of Theorem funfvima2
StepHypRef Expression
1 ssel 3483 . . 3  |-  ( A 
C_  dom  F  ->  ( B  e.  A  ->  B  e.  dom  F ) )
2 funfvima 6132 . . . . . 6  |-  ( ( Fun  F  /\  B  e.  dom  F )  -> 
( B  e.  A  ->  ( F `  B
)  e.  ( F
" A ) ) )
32ex 434 . . . . 5  |-  ( Fun 
F  ->  ( B  e.  dom  F  ->  ( B  e.  A  ->  ( F `  B )  e.  ( F " A ) ) ) )
43com23 78 . . . 4  |-  ( Fun 
F  ->  ( B  e.  A  ->  ( B  e.  dom  F  -> 
( F `  B
)  e.  ( F
" A ) ) ) )
54a2d 26 . . 3  |-  ( Fun 
F  ->  ( ( B  e.  A  ->  B  e.  dom  F )  ->  ( B  e.  A  ->  ( F `  B )  e.  ( F " A ) ) ) )
61, 5syl5 32 . 2  |-  ( Fun 
F  ->  ( A  C_ 
dom  F  ->  ( B  e.  A  ->  ( F `  B )  e.  ( F " A
) ) ) )
76imp 429 1  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( B  e.  A  ->  ( F `  B
)  e.  ( F
" A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1804    C_ wss 3461   dom cdm 4989   "cima 4992   Fun wfun 5572   ` cfv 5578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-rab 2802  df-v 3097  df-sbc 3314  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-sn 4015  df-pr 4017  df-op 4021  df-uni 4235  df-br 4438  df-opab 4496  df-id 4785  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-fv 5586
This theorem is referenced by:  fnfvima  6135  f1oweALT  6769  tz7.49  7112  phimullem  14290  mrcuni  14999  frlmsslsp  18806  frlmsslspOLD  18807  lindfrn  18833  iscldtop  19573  1stcfb  19923  2ndcomap  19936  rnelfm  20431  fmfnfmlem2  20433  fmfnfmlem4  20435  qtopbaslem  21242  tgqioo  21282  bndth  21435  volsup  21943  dyadmbllem  21985  opnmbllem  21987  itg1addlem4  22083  c1liplem1  22374  dvcnvrelem1  22395  dvcnvrelem2  22396  plyco0  22566  plyaddlem1  22587  plymullem1  22588  dvloglem  23005  logf1o2  23007  efopn  23015  axcontlem10  24252  eupares  24951  imaelshi  26953  funimass4f  27450  sitgclg  28261  cvmliftlem3  28709  nocvxminlem  29425  nocvxmin  29426  opnmbllem0  30025  ivthALT  30128  ismtyres  30279  heibor1lem  30280  ismrc  30608  aomclem4  30978  funfvima2d  37655
  Copyright terms: Public domain W3C validator