MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funfvima Structured version   Unicode version

Theorem funfvima 6148
Description: A function's value in a preimage belongs to the image. (Contributed by NM, 23-Sep-2003.)
Assertion
Ref Expression
funfvima  |-  ( ( Fun  F  /\  B  e.  dom  F )  -> 
( B  e.  A  ->  ( F `  B
)  e.  ( F
" A ) ) )

Proof of Theorem funfvima
StepHypRef Expression
1 dmres 5304 . . . . . . 7  |-  dom  ( F  |`  A )  =  ( A  i^i  dom  F )
21elin2 3685 . . . . . 6  |-  ( B  e.  dom  ( F  |`  A )  <->  ( B  e.  A  /\  B  e. 
dom  F ) )
3 funres 5633 . . . . . . . . 9  |-  ( Fun 
F  ->  Fun  ( F  |`  A ) )
4 fvelrn 6025 . . . . . . . . 9  |-  ( ( Fun  ( F  |`  A )  /\  B  e.  dom  ( F  |`  A ) )  -> 
( ( F  |`  A ) `  B
)  e.  ran  ( F  |`  A ) )
53, 4sylan 471 . . . . . . . 8  |-  ( ( Fun  F  /\  B  e.  dom  ( F  |`  A ) )  -> 
( ( F  |`  A ) `  B
)  e.  ran  ( F  |`  A ) )
6 fvres 5886 . . . . . . . . . 10  |-  ( B  e.  A  ->  (
( F  |`  A ) `
 B )  =  ( F `  B
) )
76eleq1d 2526 . . . . . . . . 9  |-  ( B  e.  A  ->  (
( ( F  |`  A ) `  B
)  e.  ran  ( F  |`  A )  <->  ( F `  B )  e.  ran  ( F  |`  A ) ) )
8 df-ima 5021 . . . . . . . . . 10  |-  ( F
" A )  =  ran  ( F  |`  A )
98eleq2i 2535 . . . . . . . . 9  |-  ( ( F `  B )  e.  ( F " A )  <->  ( F `  B )  e.  ran  ( F  |`  A ) )
107, 9syl6rbbr 264 . . . . . . . 8  |-  ( B  e.  A  ->  (
( F `  B
)  e.  ( F
" A )  <->  ( ( F  |`  A ) `  B )  e.  ran  ( F  |`  A ) ) )
115, 10syl5ibrcom 222 . . . . . . 7  |-  ( ( Fun  F  /\  B  e.  dom  ( F  |`  A ) )  -> 
( B  e.  A  ->  ( F `  B
)  e.  ( F
" A ) ) )
1211ex 434 . . . . . 6  |-  ( Fun 
F  ->  ( B  e.  dom  ( F  |`  A )  ->  ( B  e.  A  ->  ( F `  B )  e.  ( F " A ) ) ) )
132, 12syl5bir 218 . . . . 5  |-  ( Fun 
F  ->  ( ( B  e.  A  /\  B  e.  dom  F )  ->  ( B  e.  A  ->  ( F `  B )  e.  ( F " A ) ) ) )
1413expd 436 . . . 4  |-  ( Fun 
F  ->  ( B  e.  A  ->  ( B  e.  dom  F  -> 
( B  e.  A  ->  ( F `  B
)  e.  ( F
" A ) ) ) ) )
1514com12 31 . . 3  |-  ( B  e.  A  ->  ( Fun  F  ->  ( B  e.  dom  F  ->  ( B  e.  A  ->  ( F `  B )  e.  ( F " A ) ) ) ) )
1615impd 431 . 2  |-  ( B  e.  A  ->  (
( Fun  F  /\  B  e.  dom  F )  ->  ( B  e.  A  ->  ( F `  B )  e.  ( F " A ) ) ) )
1716pm2.43b 50 1  |-  ( ( Fun  F  /\  B  e.  dom  F )  -> 
( B  e.  A  ->  ( F `  B
)  e.  ( F
" A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1819   dom cdm 5008   ran crn 5009    |` cres 5010   "cima 5011   Fun wfun 5588   ` cfv 5594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pr 4695
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-fv 5602
This theorem is referenced by:  funfvima2  6149  elovimad  6336  tz7.48-2  7125  tz9.12lem3  8224  lindff1  18981  txcnp  20246  c1liplem1  22522  htthlem  25960  tpr2rico  28047  brsiga  28315  erdszelem8  28817  nobndlem2  29627  nofulllem3  29638
  Copyright terms: Public domain W3C validator