MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funfv2 Unicode version

Theorem funfv2 5439
Description: The value of a function. Definition of function value in [Enderton] p. 43. (Contributed by NM, 22-May-1998.)
Assertion
Ref Expression
funfv2  |-  ( Fun 
F  ->  ( F `  A )  =  U. { y  |  A F y } )
Distinct variable groups:    y, A    y, F

Proof of Theorem funfv2
StepHypRef Expression
1 funfv 5438 . 2  |-  ( Fun 
F  ->  ( F `  A )  =  U. ( F " { A } ) )
2 funrel 5130 . . . 4  |-  ( Fun 
F  ->  Rel  F )
3 relimasn 4943 . . . 4  |-  ( Rel 
F  ->  ( F " { A } )  =  { y  |  A F y } )
42, 3syl 17 . . 3  |-  ( Fun 
F  ->  ( F " { A } )  =  { y  |  A F y } )
54unieqd 3738 . 2  |-  ( Fun 
F  ->  U. ( F " { A }
)  =  U. {
y  |  A F y } )
61, 5eqtrd 2285 1  |-  ( Fun 
F  ->  ( F `  A )  =  U. { y  |  A F y } )
Colors of variables: wff set class
Syntax hints:    -> wi 6    = wceq 1619   {cab 2239   {csn 3544   U.cuni 3727   class class class wbr 3920   "cima 4583   Rel wrel 4585   Fun wfun 4586   ` cfv 4592
This theorem is referenced by:  funfv2f  5440
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-sbc 2922  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-br 3921  df-opab 3975  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-fv 4608
  Copyright terms: Public domain W3C validator