MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funfv Structured version   Unicode version

Theorem funfv 5944
Description: A simplified expression for the value of a function when we know it's a function. (Contributed by NM, 22-May-1998.)
Assertion
Ref Expression
funfv  |-  ( Fun 
F  ->  ( F `  A )  =  U. ( F " { A } ) )

Proof of Theorem funfv
StepHypRef Expression
1 fvex 5887 . . . . 5  |-  ( F `
 A )  e. 
_V
21unisn 4231 . . . 4  |-  U. {
( F `  A
) }  =  ( F `  A )
3 eqid 2422 . . . . . . 7  |-  dom  F  =  dom  F
4 df-fn 5600 . . . . . . 7  |-  ( F  Fn  dom  F  <->  ( Fun  F  /\  dom  F  =  dom  F ) )
53, 4mpbiran2 927 . . . . . 6  |-  ( F  Fn  dom  F  <->  Fun  F )
6 fnsnfv 5937 . . . . . 6  |-  ( ( F  Fn  dom  F  /\  A  e.  dom  F )  ->  { ( F `  A ) }  =  ( F " { A } ) )
75, 6sylanbr 475 . . . . 5  |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  { ( F `  A ) }  =  ( F " { A } ) )
87unieqd 4226 . . . 4  |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  U. { ( F `  A ) }  =  U. ( F " { A } ) )
92, 8syl5eqr 2477 . . 3  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( F `  A
)  =  U. ( F " { A }
) )
109ex 435 . 2  |-  ( Fun 
F  ->  ( A  e.  dom  F  ->  ( F `  A )  =  U. ( F " { A } ) ) )
11 ndmfv 5901 . . 3  |-  ( -.  A  e.  dom  F  ->  ( F `  A
)  =  (/) )
12 ndmima 5220 . . . . 5  |-  ( -.  A  e.  dom  F  ->  ( F " { A } )  =  (/) )
1312unieqd 4226 . . . 4  |-  ( -.  A  e.  dom  F  ->  U. ( F " { A } )  = 
U. (/) )
14 uni0 4243 . . . 4  |-  U. (/)  =  (/)
1513, 14syl6eq 2479 . . 3  |-  ( -.  A  e.  dom  F  ->  U. ( F " { A } )  =  (/) )
1611, 15eqtr4d 2466 . 2  |-  ( -.  A  e.  dom  F  ->  ( F `  A
)  =  U. ( F " { A }
) )
1710, 16pm2.61d1 162 1  |-  ( Fun 
F  ->  ( F `  A )  =  U. ( F " { A } ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1868   (/)c0 3761   {csn 3996   U.cuni 4216   dom cdm 4849   "cima 4852   Fun wfun 5591    Fn wfn 5592   ` cfv 5597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-sep 4543  ax-nul 4551  ax-pow 4598  ax-pr 4656
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-ral 2780  df-rex 2781  df-rab 2784  df-v 3083  df-sbc 3300  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3910  df-sn 3997  df-pr 3999  df-op 4003  df-uni 4217  df-br 4421  df-opab 4480  df-id 4764  df-xp 4855  df-rel 4856  df-cnv 4857  df-co 4858  df-dm 4859  df-rn 4860  df-res 4861  df-ima 4862  df-iota 5561  df-fun 5599  df-fn 5600  df-fv 5605
This theorem is referenced by:  funfv2  5945  fvun  5947  dffv2  5950
  Copyright terms: Public domain W3C validator