MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funex Structured version   Unicode version

Theorem funex 6123
Description: If the domain of a function exists, so the function. Part of Theorem 4.15(v) of [Monk1] p. 46. This theorem is derived using the Axiom of Replacement in the form of fnex 6122. (Note: Any resemblance between F.U.N.E.X. and "Have You Any Eggs" is purely a coincidence originated by Swedish chefs.) (Contributed by NM, 11-Nov-1995.)
Assertion
Ref Expression
funex  |-  ( ( Fun  F  /\  dom  F  e.  B )  ->  F  e.  _V )

Proof of Theorem funex
StepHypRef Expression
1 funfn 5600 . 2  |-  ( Fun 
F  <->  F  Fn  dom  F )
2 fnex 6122 . 2  |-  ( ( F  Fn  dom  F  /\  dom  F  e.  B
)  ->  F  e.  _V )
31, 2sylanb 472 1  |-  ( ( Fun  F  /\  dom  F  e.  B )  ->  F  e.  _V )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1844   _Vcvv 3061   dom cdm 4825   Fun wfun 5565    Fn wfn 5566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-rep 4509  ax-sep 4519  ax-nul 4527  ax-pr 4632
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3063  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3741  df-if 3888  df-sn 3975  df-pr 3977  df-op 3981  df-uni 4194  df-iun 4275  df-br 4398  df-opab 4456  df-mpt 4457  df-id 4740  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579
This theorem is referenced by:  opabex  6124  mptexg  6125  funrnex  6753  oprabexd  6773  oprabex  6774  mpt2exxg  6860  tfrlem14  7096  hartogslem2  8004  harwdom  8052  abrexexd  27835  mptexgf  27921  mpt2exxg2  38451
  Copyright terms: Public domain W3C validator