Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funcoressn Structured version   Unicode version

Theorem funcoressn 31679
Description: A composition restricted to a singleton is a function under certain conditions. (Contributed by Alexander van der Vekens, 25-Jul-2017.)
Assertion
Ref Expression
funcoressn  |-  ( ( ( ( G `  X )  e.  dom  F  /\  Fun  ( F  |`  { ( G `  X ) } ) )  /\  ( G  Fn  A  /\  X  e.  A ) )  ->  Fun  ( ( F  o.  G )  |`  { X } ) )

Proof of Theorem funcoressn
StepHypRef Expression
1 dmressnsn 5310 . . . . . . . 8  |-  ( ( G `  X )  e.  dom  F  ->  dom  ( F  |`  { ( G `  X ) } )  =  {
( G `  X
) } )
2 df-fn 5589 . . . . . . . . 9  |-  ( ( F  |`  { ( G `  X ) } )  Fn  {
( G `  X
) }  <->  ( Fun  ( F  |`  { ( G `  X ) } )  /\  dom  ( F  |`  { ( G `  X ) } )  =  {
( G `  X
) } ) )
32simplbi2com 627 . . . . . . . 8  |-  ( dom  ( F  |`  { ( G `  X ) } )  =  {
( G `  X
) }  ->  ( Fun  ( F  |`  { ( G `  X ) } )  ->  ( F  |`  { ( G `
 X ) } )  Fn  { ( G `  X ) } ) )
41, 3syl 16 . . . . . . 7  |-  ( ( G `  X )  e.  dom  F  -> 
( Fun  ( F  |` 
{ ( G `  X ) } )  ->  ( F  |`  { ( G `  X ) } )  Fn  { ( G `
 X ) } ) )
54imp 429 . . . . . 6  |-  ( ( ( G `  X
)  e.  dom  F  /\  Fun  ( F  |`  { ( G `  X ) } ) )  ->  ( F  |` 
{ ( G `  X ) } )  Fn  { ( G `
 X ) } )
65adantr 465 . . . . 5  |-  ( ( ( ( G `  X )  e.  dom  F  /\  Fun  ( F  |`  { ( G `  X ) } ) )  /\  ( G  Fn  A  /\  X  e.  A ) )  -> 
( F  |`  { ( G `  X ) } )  Fn  {
( G `  X
) } )
7 fnsnfv 5925 . . . . . . . . 9  |-  ( ( G  Fn  A  /\  X  e.  A )  ->  { ( G `  X ) }  =  ( G " { X } ) )
87adantl 466 . . . . . . . 8  |-  ( ( ( ( G `  X )  e.  dom  F  /\  Fun  ( F  |`  { ( G `  X ) } ) )  /\  ( G  Fn  A  /\  X  e.  A ) )  ->  { ( G `  X ) }  =  ( G " { X } ) )
9 df-ima 5012 . . . . . . . 8  |-  ( G
" { X }
)  =  ran  ( G  |`  { X }
)
108, 9syl6eq 2524 . . . . . . 7  |-  ( ( ( ( G `  X )  e.  dom  F  /\  Fun  ( F  |`  { ( G `  X ) } ) )  /\  ( G  Fn  A  /\  X  e.  A ) )  ->  { ( G `  X ) }  =  ran  ( G  |`  { X } ) )
1110reseq2d 5271 . . . . . 6  |-  ( ( ( ( G `  X )  e.  dom  F  /\  Fun  ( F  |`  { ( G `  X ) } ) )  /\  ( G  Fn  A  /\  X  e.  A ) )  -> 
( F  |`  { ( G `  X ) } )  =  ( F  |`  ran  ( G  |`  { X } ) ) )
1211, 10fneq12d 5671 . . . . 5  |-  ( ( ( ( G `  X )  e.  dom  F  /\  Fun  ( F  |`  { ( G `  X ) } ) )  /\  ( G  Fn  A  /\  X  e.  A ) )  -> 
( ( F  |`  { ( G `  X ) } )  Fn  { ( G `
 X ) }  <-> 
( F  |`  ran  ( G  |`  { X }
) )  Fn  ran  ( G  |`  { X } ) ) )
136, 12mpbid 210 . . . 4  |-  ( ( ( ( G `  X )  e.  dom  F  /\  Fun  ( F  |`  { ( G `  X ) } ) )  /\  ( G  Fn  A  /\  X  e.  A ) )  -> 
( F  |`  ran  ( G  |`  { X }
) )  Fn  ran  ( G  |`  { X } ) )
14 fnfun 5676 . . . . . . 7  |-  ( G  Fn  A  ->  Fun  G )
15 funres 5625 . . . . . . . 8  |-  ( Fun 
G  ->  Fun  ( G  |`  { X } ) )
16 funfn 5615 . . . . . . . 8  |-  ( Fun  ( G  |`  { X } )  <->  ( G  |` 
{ X } )  Fn  dom  ( G  |`  { X } ) )
1715, 16sylib 196 . . . . . . 7  |-  ( Fun 
G  ->  ( G  |` 
{ X } )  Fn  dom  ( G  |`  { X } ) )
1814, 17syl 16 . . . . . 6  |-  ( G  Fn  A  ->  ( G  |`  { X }
)  Fn  dom  ( G  |`  { X }
) )
1918adantr 465 . . . . 5  |-  ( ( G  Fn  A  /\  X  e.  A )  ->  ( G  |`  { X } )  Fn  dom  ( G  |`  { X } ) )
2019adantl 466 . . . 4  |-  ( ( ( ( G `  X )  e.  dom  F  /\  Fun  ( F  |`  { ( G `  X ) } ) )  /\  ( G  Fn  A  /\  X  e.  A ) )  -> 
( G  |`  { X } )  Fn  dom  ( G  |`  { X } ) )
21 fnresfnco 31678 . . . 4  |-  ( ( ( F  |`  ran  ( G  |`  { X }
) )  Fn  ran  ( G  |`  { X } )  /\  ( G  |`  { X }
)  Fn  dom  ( G  |`  { X }
) )  ->  ( F  o.  ( G  |` 
{ X } ) )  Fn  dom  ( G  |`  { X }
) )
2213, 20, 21syl2anc 661 . . 3  |-  ( ( ( ( G `  X )  e.  dom  F  /\  Fun  ( F  |`  { ( G `  X ) } ) )  /\  ( G  Fn  A  /\  X  e.  A ) )  -> 
( F  o.  ( G  |`  { X }
) )  Fn  dom  ( G  |`  { X } ) )
23 fnfun 5676 . . 3  |-  ( ( F  o.  ( G  |`  { X } ) )  Fn  dom  ( G  |`  { X }
)  ->  Fun  ( F  o.  ( G  |`  { X } ) ) )
2422, 23syl 16 . 2  |-  ( ( ( ( G `  X )  e.  dom  F  /\  Fun  ( F  |`  { ( G `  X ) } ) )  /\  ( G  Fn  A  /\  X  e.  A ) )  ->  Fun  ( F  o.  ( G  |`  { X }
) ) )
25 resco 5509 . . 3  |-  ( ( F  o.  G )  |`  { X } )  =  ( F  o.  ( G  |`  { X } ) )
2625funeqi 5606 . 2  |-  ( Fun  ( ( F  o.  G )  |`  { X } )  <->  Fun  ( F  o.  ( G  |`  { X } ) ) )
2724, 26sylibr 212 1  |-  ( ( ( ( G `  X )  e.  dom  F  /\  Fun  ( F  |`  { ( G `  X ) } ) )  /\  ( G  Fn  A  /\  X  e.  A ) )  ->  Fun  ( ( F  o.  G )  |`  { X } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   {csn 4027   dom cdm 4999   ran crn 5000    |` cres 5001   "cima 5002    o. ccom 5003   Fun wfun 5580    Fn wfn 5581   ` cfv 5586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-fv 5594
This theorem is referenced by:  afvco2  31728
  Copyright terms: Public domain W3C validator