Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funcoressn Structured version   Unicode version

Theorem funcoressn 37593
Description: A composition restricted to a singleton is a function under certain conditions. (Contributed by Alexander van der Vekens, 25-Jul-2017.)
Assertion
Ref Expression
funcoressn  |-  ( ( ( ( G `  X )  e.  dom  F  /\  Fun  ( F  |`  { ( G `  X ) } ) )  /\  ( G  Fn  A  /\  X  e.  A ) )  ->  Fun  ( ( F  o.  G )  |`  { X } ) )

Proof of Theorem funcoressn
StepHypRef Expression
1 dmressnsn 5134 . . . . . . . 8  |-  ( ( G `  X )  e.  dom  F  ->  dom  ( F  |`  { ( G `  X ) } )  =  {
( G `  X
) } )
2 df-fn 5574 . . . . . . . . 9  |-  ( ( F  |`  { ( G `  X ) } )  Fn  {
( G `  X
) }  <->  ( Fun  ( F  |`  { ( G `  X ) } )  /\  dom  ( F  |`  { ( G `  X ) } )  =  {
( G `  X
) } ) )
32simplbi2com 627 . . . . . . . 8  |-  ( dom  ( F  |`  { ( G `  X ) } )  =  {
( G `  X
) }  ->  ( Fun  ( F  |`  { ( G `  X ) } )  ->  ( F  |`  { ( G `
 X ) } )  Fn  { ( G `  X ) } ) )
41, 3syl 17 . . . . . . 7  |-  ( ( G `  X )  e.  dom  F  -> 
( Fun  ( F  |` 
{ ( G `  X ) } )  ->  ( F  |`  { ( G `  X ) } )  Fn  { ( G `
 X ) } ) )
54imp 429 . . . . . 6  |-  ( ( ( G `  X
)  e.  dom  F  /\  Fun  ( F  |`  { ( G `  X ) } ) )  ->  ( F  |` 
{ ( G `  X ) } )  Fn  { ( G `
 X ) } )
65adantr 465 . . . . 5  |-  ( ( ( ( G `  X )  e.  dom  F  /\  Fun  ( F  |`  { ( G `  X ) } ) )  /\  ( G  Fn  A  /\  X  e.  A ) )  -> 
( F  |`  { ( G `  X ) } )  Fn  {
( G `  X
) } )
7 fnsnfv 5911 . . . . . . . . 9  |-  ( ( G  Fn  A  /\  X  e.  A )  ->  { ( G `  X ) }  =  ( G " { X } ) )
87adantl 466 . . . . . . . 8  |-  ( ( ( ( G `  X )  e.  dom  F  /\  Fun  ( F  |`  { ( G `  X ) } ) )  /\  ( G  Fn  A  /\  X  e.  A ) )  ->  { ( G `  X ) }  =  ( G " { X } ) )
9 df-ima 4838 . . . . . . . 8  |-  ( G
" { X }
)  =  ran  ( G  |`  { X }
)
108, 9syl6eq 2461 . . . . . . 7  |-  ( ( ( ( G `  X )  e.  dom  F  /\  Fun  ( F  |`  { ( G `  X ) } ) )  /\  ( G  Fn  A  /\  X  e.  A ) )  ->  { ( G `  X ) }  =  ran  ( G  |`  { X } ) )
1110reseq2d 5096 . . . . . 6  |-  ( ( ( ( G `  X )  e.  dom  F  /\  Fun  ( F  |`  { ( G `  X ) } ) )  /\  ( G  Fn  A  /\  X  e.  A ) )  -> 
( F  |`  { ( G `  X ) } )  =  ( F  |`  ran  ( G  |`  { X } ) ) )
1211, 10fneq12d 5656 . . . . 5  |-  ( ( ( ( G `  X )  e.  dom  F  /\  Fun  ( F  |`  { ( G `  X ) } ) )  /\  ( G  Fn  A  /\  X  e.  A ) )  -> 
( ( F  |`  { ( G `  X ) } )  Fn  { ( G `
 X ) }  <-> 
( F  |`  ran  ( G  |`  { X }
) )  Fn  ran  ( G  |`  { X } ) ) )
136, 12mpbid 212 . . . 4  |-  ( ( ( ( G `  X )  e.  dom  F  /\  Fun  ( F  |`  { ( G `  X ) } ) )  /\  ( G  Fn  A  /\  X  e.  A ) )  -> 
( F  |`  ran  ( G  |`  { X }
) )  Fn  ran  ( G  |`  { X } ) )
14 fnfun 5661 . . . . . . 7  |-  ( G  Fn  A  ->  Fun  G )
15 funres 5610 . . . . . . . 8  |-  ( Fun 
G  ->  Fun  ( G  |`  { X } ) )
16 funfn 5600 . . . . . . . 8  |-  ( Fun  ( G  |`  { X } )  <->  ( G  |` 
{ X } )  Fn  dom  ( G  |`  { X } ) )
1715, 16sylib 198 . . . . . . 7  |-  ( Fun 
G  ->  ( G  |` 
{ X } )  Fn  dom  ( G  |`  { X } ) )
1814, 17syl 17 . . . . . 6  |-  ( G  Fn  A  ->  ( G  |`  { X }
)  Fn  dom  ( G  |`  { X }
) )
1918adantr 465 . . . . 5  |-  ( ( G  Fn  A  /\  X  e.  A )  ->  ( G  |`  { X } )  Fn  dom  ( G  |`  { X } ) )
2019adantl 466 . . . 4  |-  ( ( ( ( G `  X )  e.  dom  F  /\  Fun  ( F  |`  { ( G `  X ) } ) )  /\  ( G  Fn  A  /\  X  e.  A ) )  -> 
( G  |`  { X } )  Fn  dom  ( G  |`  { X } ) )
21 fnresfnco 37592 . . . 4  |-  ( ( ( F  |`  ran  ( G  |`  { X }
) )  Fn  ran  ( G  |`  { X } )  /\  ( G  |`  { X }
)  Fn  dom  ( G  |`  { X }
) )  ->  ( F  o.  ( G  |` 
{ X } ) )  Fn  dom  ( G  |`  { X }
) )
2213, 20, 21syl2anc 661 . . 3  |-  ( ( ( ( G `  X )  e.  dom  F  /\  Fun  ( F  |`  { ( G `  X ) } ) )  /\  ( G  Fn  A  /\  X  e.  A ) )  -> 
( F  o.  ( G  |`  { X }
) )  Fn  dom  ( G  |`  { X } ) )
23 fnfun 5661 . . 3  |-  ( ( F  o.  ( G  |`  { X } ) )  Fn  dom  ( G  |`  { X }
)  ->  Fun  ( F  o.  ( G  |`  { X } ) ) )
2422, 23syl 17 . 2  |-  ( ( ( ( G `  X )  e.  dom  F  /\  Fun  ( F  |`  { ( G `  X ) } ) )  /\  ( G  Fn  A  /\  X  e.  A ) )  ->  Fun  ( F  o.  ( G  |`  { X }
) ) )
25 resco 5329 . . 3  |-  ( ( F  o.  G )  |`  { X } )  =  ( F  o.  ( G  |`  { X } ) )
2625funeqi 5591 . 2  |-  ( Fun  ( ( F  o.  G )  |`  { X } )  <->  Fun  ( F  o.  ( G  |`  { X } ) ) )
2724, 26sylibr 214 1  |-  ( ( ( ( G `  X )  e.  dom  F  /\  Fun  ( F  |`  { ( G `  X ) } ) )  /\  ( G  Fn  A  /\  X  e.  A ) )  ->  Fun  ( ( F  o.  G )  |`  { X } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1407    e. wcel 1844   {csn 3974   dom cdm 4825   ran crn 4826    |` cres 4827   "cima 4828    o. ccom 4829   Fun wfun 5565    Fn wfn 5566   ` cfv 5571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-sep 4519  ax-nul 4527  ax-pr 4632
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3063  df-sbc 3280  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3741  df-if 3888  df-sn 3975  df-pr 3977  df-op 3981  df-uni 4194  df-br 4398  df-opab 4456  df-id 4740  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-iota 5535  df-fun 5573  df-fn 5574  df-fv 5579
This theorem is referenced by:  afvco2  37642
  Copyright terms: Public domain W3C validator