MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnvsn Structured version   Unicode version

Theorem funcnvsn 5639
Description: The converse singleton of an ordered pair is a function. This is equivalent to funsn 5642 via cnvsn 5497, but stating it this way allows us to skip the sethood assumptions on  A and  B. (Contributed by NM, 30-Apr-2015.)
Assertion
Ref Expression
funcnvsn  |-  Fun  `' { <. A ,  B >. }

Proof of Theorem funcnvsn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 5384 . 2  |-  Rel  `' { <. A ,  B >. }
2 moeq 3275 . . . 4  |-  E* y 
y  =  A
3 vex 3112 . . . . . . . 8  |-  x  e. 
_V
4 vex 3112 . . . . . . . 8  |-  y  e. 
_V
53, 4brcnv 5195 . . . . . . 7  |-  ( x `' { <. A ,  B >. } y  <->  y { <. A ,  B >. } x )
6 df-br 4457 . . . . . . 7  |-  ( y { <. A ,  B >. } x  <->  <. y ,  x >.  e.  { <. A ,  B >. } )
75, 6bitri 249 . . . . . 6  |-  ( x `' { <. A ,  B >. } y  <->  <. y ,  x >.  e.  { <. A ,  B >. } )
8 elsni 4057 . . . . . . 7  |-  ( <.
y ,  x >.  e. 
{ <. A ,  B >. }  ->  <. y ,  x >.  =  <. A ,  B >. )
94, 3opth1 4729 . . . . . . 7  |-  ( <.
y ,  x >.  = 
<. A ,  B >.  -> 
y  =  A )
108, 9syl 16 . . . . . 6  |-  ( <.
y ,  x >.  e. 
{ <. A ,  B >. }  ->  y  =  A )
117, 10sylbi 195 . . . . 5  |-  ( x `' { <. A ,  B >. } y  ->  y  =  A )
1211moimi 2341 . . . 4  |-  ( E* y  y  =  A  ->  E* y  x `' { <. A ,  B >. } y )
132, 12ax-mp 5 . . 3  |-  E* y  x `' { <. A ,  B >. } y
1413ax-gen 1619 . 2  |-  A. x E* y  x `' { <. A ,  B >. } y
15 dffun6 5609 . 2  |-  ( Fun  `' { <. A ,  B >. }  <->  ( Rel  `' { <. A ,  B >. }  /\  A. x E* y  x `' { <. A ,  B >. } y ) )
161, 14, 15mpbir2an 920 1  |-  Fun  `' { <. A ,  B >. }
Colors of variables: wff setvar class
Syntax hints:   A.wal 1393    = wceq 1395    e. wcel 1819   E*wmo 2284   {csn 4032   <.cop 4038   class class class wbr 4456   `'ccnv 5007   Rel wrel 5013   Fun wfun 5588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pr 4695
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-sn 4033  df-pr 4035  df-op 4039  df-br 4457  df-opab 4516  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-fun 5596
This theorem is referenced by:  funsng  5640  strlemor1  14739  0spth  24700  2pthlem1  24724
  Copyright terms: Public domain W3C validator