MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnvres2 Structured version   Unicode version

Theorem funcnvres2 5672
Description: The converse of a restriction of the converse of a function equals the function restricted to the image of its converse. (Contributed by NM, 4-May-2005.)
Assertion
Ref Expression
funcnvres2  |-  ( Fun 
F  ->  `' ( `' F  |`  A )  =  ( F  |`  ( `' F " A ) ) )

Proof of Theorem funcnvres2
StepHypRef Expression
1 funcnvcnv 5659 . . 3  |-  ( Fun 
F  ->  Fun  `' `' F )
2 funcnvres 5670 . . 3  |-  ( Fun  `' `' F  ->  `' ( `' F  |`  A )  =  ( `' `' F  |`  ( `' F " A ) ) )
31, 2syl 17 . 2  |-  ( Fun 
F  ->  `' ( `' F  |`  A )  =  ( `' `' F  |`  ( `' F " A ) ) )
4 funrel 5618 . . . 4  |-  ( Fun 
F  ->  Rel  F )
5 dfrel2 5306 . . . 4  |-  ( Rel 
F  <->  `' `' F  =  F
)
64, 5sylib 199 . . 3  |-  ( Fun 
F  ->  `' `' F  =  F )
76reseq1d 5124 . 2  |-  ( Fun 
F  ->  ( `' `' F  |`  ( `' F " A ) )  =  ( F  |`  ( `' F " A ) ) )
83, 7eqtrd 2470 1  |-  ( Fun 
F  ->  `' ( `' F  |`  A )  =  ( F  |`  ( `' F " A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1437   `'ccnv 4853    |` cres 4856   "cima 4857   Rel wrel 4859   Fun wfun 5595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pr 4661
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-rab 2791  df-v 3089  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-sn 4003  df-pr 4005  df-op 4009  df-br 4427  df-opab 4485  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-fun 5603
This theorem is referenced by:  funimacnv  5673  foimacnv  5848  unbenlem  14815  ofco2  19411  dvlog  23469  fresf1o  28079
  Copyright terms: Public domain W3C validator