MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnvres Structured version   Unicode version

Theorem funcnvres 5588
Description: The converse of a restricted function. (Contributed by NM, 27-Mar-1998.)
Assertion
Ref Expression
funcnvres  |-  ( Fun  `' F  ->  `' ( F  |`  A )  =  ( `' F  |`  ( F " A
) ) )

Proof of Theorem funcnvres
StepHypRef Expression
1 df-ima 4954 . . . 4  |-  ( F
" A )  =  ran  ( F  |`  A )
2 df-rn 4952 . . . 4  |-  ran  ( F  |`  A )  =  dom  `' ( F  |`  A )
31, 2eqtri 2480 . . 3  |-  ( F
" A )  =  dom  `' ( F  |`  A )
43reseq2i 5208 . 2  |-  ( `' F  |`  ( F " A ) )  =  ( `' F  |`  dom  `' ( F  |`  A ) )
5 resss 5235 . . . 4  |-  ( F  |`  A )  C_  F
6 cnvss 5113 . . . 4  |-  ( ( F  |`  A )  C_  F  ->  `' ( F  |`  A )  C_  `' F )
75, 6ax-mp 5 . . 3  |-  `' ( F  |`  A )  C_  `' F
8 funssres 5559 . . 3  |-  ( ( Fun  `' F  /\  `' ( F  |`  A )  C_  `' F )  ->  ( `' F  |`  dom  `' ( F  |`  A ) )  =  `' ( F  |`  A )
)
97, 8mpan2 671 . 2  |-  ( Fun  `' F  ->  ( `' F  |`  dom  `' ( F  |`  A )
)  =  `' ( F  |`  A )
)
104, 9syl5req 2505 1  |-  ( Fun  `' F  ->  `' ( F  |`  A )  =  ( `' F  |`  ( F " A
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1370    C_ wss 3429   `'ccnv 4940   dom cdm 4941   ran crn 4942    |` cres 4943   "cima 4944   Fun wfun 5513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4514  ax-nul 4522  ax-pr 4632
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-rab 2804  df-v 3073  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-nul 3739  df-if 3893  df-sn 3979  df-pr 3981  df-op 3985  df-br 4394  df-opab 4452  df-id 4737  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-fun 5521
This theorem is referenced by:  cnvresid  5589  funcnvres2  5590  f1orescnv  5757  f1imacnv  5758  sbthlem4  7527  fpwwe2lem6  8906  fpwwe2lem9  8909  hmeores  19469  dvcnvrelem2  21616  dfrelog  22143  efopnlem2  22228  diophrw  29238
  Copyright terms: Public domain W3C validator