MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnvres Structured version   Unicode version

Theorem funcnvres 5637
Description: The converse of a restricted function. (Contributed by NM, 27-Mar-1998.)
Assertion
Ref Expression
funcnvres  |-  ( Fun  `' F  ->  `' ( F  |`  A )  =  ( `' F  |`  ( F " A
) ) )

Proof of Theorem funcnvres
StepHypRef Expression
1 df-ima 4835 . . . 4  |-  ( F
" A )  =  ran  ( F  |`  A )
2 df-rn 4833 . . . 4  |-  ran  ( F  |`  A )  =  dom  `' ( F  |`  A )
31, 2eqtri 2431 . . 3  |-  ( F
" A )  =  dom  `' ( F  |`  A )
43reseq2i 5090 . 2  |-  ( `' F  |`  ( F " A ) )  =  ( `' F  |`  dom  `' ( F  |`  A ) )
5 resss 5116 . . . 4  |-  ( F  |`  A )  C_  F
6 cnvss 4995 . . . 4  |-  ( ( F  |`  A )  C_  F  ->  `' ( F  |`  A )  C_  `' F )
75, 6ax-mp 5 . . 3  |-  `' ( F  |`  A )  C_  `' F
8 funssres 5608 . . 3  |-  ( ( Fun  `' F  /\  `' ( F  |`  A )  C_  `' F )  ->  ( `' F  |`  dom  `' ( F  |`  A ) )  =  `' ( F  |`  A )
)
97, 8mpan2 669 . 2  |-  ( Fun  `' F  ->  ( `' F  |`  dom  `' ( F  |`  A )
)  =  `' ( F  |`  A )
)
104, 9syl5req 2456 1  |-  ( Fun  `' F  ->  `' ( F  |`  A )  =  ( `' F  |`  ( F " A
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1405    C_ wss 3413   `'ccnv 4821   dom cdm 4822   ran crn 4823    |` cres 4824   "cima 4825   Fun wfun 5562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4516  ax-nul 4524  ax-pr 4629
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-rab 2762  df-v 3060  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-nul 3738  df-if 3885  df-sn 3972  df-pr 3974  df-op 3978  df-br 4395  df-opab 4453  df-id 4737  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-fun 5570
This theorem is referenced by:  cnvresid  5638  funcnvres2  5639  f1orescnv  5813  f1imacnv  5814  sbthlem4  7667  fpwwe2lem6  9042  fpwwe2lem9  9045  hmeores  20562  dvcnvrelem2  22709  dfrelog  23243  efopnlem2  23330  diophrw  35033
  Copyright terms: Public domain W3C validator