MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnv Unicode version

Theorem funcnv 5470
Description: The converse of a class is a function iff the class is single-rooted, which means that for any  y in the range of  A there is at most one  x such that  x A
y. Definition of single-rooted in [Enderton] p. 43. See funcnv2 5469 for a simpler version. (Contributed by NM, 13-Aug-2004.)
Assertion
Ref Expression
funcnv  |-  ( Fun  `' A  <->  A. y  e.  ran  A E* x  x A y )
Distinct variable group:    x, y, A

Proof of Theorem funcnv
StepHypRef Expression
1 vex 2919 . . . . . . 7  |-  x  e. 
_V
2 vex 2919 . . . . . . 7  |-  y  e. 
_V
31, 2brelrn 5059 . . . . . 6  |-  ( x A y  ->  y  e.  ran  A )
43pm4.71ri 615 . . . . 5  |-  ( x A y  <->  ( y  e.  ran  A  /\  x A y ) )
54mobii 2290 . . . 4  |-  ( E* x  x A y  <->  E* x ( y  e. 
ran  A  /\  x A y ) )
6 moanimv 2312 . . . 4  |-  ( E* x ( y  e. 
ran  A  /\  x A y )  <->  ( y  e.  ran  A  ->  E* x  x A y ) )
75, 6bitri 241 . . 3  |-  ( E* x  x A y  <-> 
( y  e.  ran  A  ->  E* x  x A y ) )
87albii 1572 . 2  |-  ( A. y E* x  x A y  <->  A. y ( y  e.  ran  A  ->  E* x  x A
y ) )
9 funcnv2 5469 . 2  |-  ( Fun  `' A  <->  A. y E* x  x A y )
10 df-ral 2671 . 2  |-  ( A. y  e.  ran  A E* x  x A y  <->  A. y
( y  e.  ran  A  ->  E* x  x A y ) )
118, 9, 103bitr4i 269 1  |-  ( Fun  `' A  <->  A. y  e.  ran  A E* x  x A y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   A.wal 1546    e. wcel 1721   E*wmo 2255   A.wral 2666   class class class wbr 4172   `'ccnv 4836   ran crn 4838   Fun wfun 5407
This theorem is referenced by:  funcnv3  5471  fncnv  5474
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-br 4173  df-opab 4227  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-fun 5415
  Copyright terms: Public domain W3C validator