MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnv Unicode version

Theorem funcnv 5167
Description: The converse of a class is a function iff the class is single-rooted, which means that for any  y in the range of  A there is at most one  x such that  x A
y. Definition of single-rooted in [Enderton] p. 43. See funcnv2 5166 for a simpler version. (Contributed by NM, 13-Aug-2004.)
Assertion
Ref Expression
funcnv  |-  ( Fun  `' A  <->  A. y  e.  ran  A E* x  x A y )
Distinct variable group:    x, y, A

Proof of Theorem funcnv
StepHypRef Expression
1 vex 2730 . . . . . . 7  |-  x  e. 
_V
2 vex 2730 . . . . . . 7  |-  y  e. 
_V
31, 2brelrn 4816 . . . . . 6  |-  ( x A y  ->  y  e.  ran  A )
43pm4.71ri 617 . . . . 5  |-  ( x A y  <->  ( y  e.  ran  A  /\  x A y ) )
54mobii 2149 . . . 4  |-  ( E* x  x A y  <->  E* x ( y  e. 
ran  A  /\  x A y ) )
6 moanimv 2171 . . . 4  |-  ( E* x ( y  e. 
ran  A  /\  x A y )  <->  ( y  e.  ran  A  ->  E* x  x A y ) )
75, 6bitri 242 . . 3  |-  ( E* x  x A y  <-> 
( y  e.  ran  A  ->  E* x  x A y ) )
87albii 1554 . 2  |-  ( A. y E* x  x A y  <->  A. y ( y  e.  ran  A  ->  E* x  x A
y ) )
9 funcnv2 5166 . 2  |-  ( Fun  `' A  <->  A. y E* x  x A y )
10 df-ral 2513 . 2  |-  ( A. y  e.  ran  A E* x  x A y  <->  A. y
( y  e.  ran  A  ->  E* x  x A y ) )
118, 9, 103bitr4i 270 1  |-  ( Fun  `' A  <->  A. y  e.  ran  A E* x  x A y )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360   A.wal 1532    e. wcel 1621   E*wmo 2115   A.wral 2509   class class class wbr 3920   `'ccnv 4579   ran crn 4581   Fun wfun 4586
This theorem is referenced by:  funcnv3  5168  fncnv  5171
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pr 4108
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-sn 3550  df-pr 3551  df-op 3553  df-br 3921  df-opab 3975  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-fun 4602
  Copyright terms: Public domain W3C validator