MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcixp Structured version   Unicode version

Theorem funcixp 15355
Description: The morphism part of a functor is a function on homsets. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
funcixp.b  |-  B  =  ( Base `  D
)
funcixp.h  |-  H  =  ( Hom  `  D
)
funcixp.j  |-  J  =  ( Hom  `  E
)
funcixp.f  |-  ( ph  ->  F ( D  Func  E ) G )
Assertion
Ref Expression
funcixp  |-  ( ph  ->  G  e.  X_ z  e.  ( B  X.  B
) ( ( ( F `  ( 1st `  z ) ) J ( F `  ( 2nd `  z ) ) )  ^m  ( H `
 z ) ) )
Distinct variable groups:    z, B    z, D    z, E    ph, z    z, F    z, G    z, J    z, H

Proof of Theorem funcixp
Dummy variables  m  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funcixp.f . . 3  |-  ( ph  ->  F ( D  Func  E ) G )
2 funcixp.b . . . 4  |-  B  =  ( Base `  D
)
3 eqid 2454 . . . 4  |-  ( Base `  E )  =  (
Base `  E )
4 funcixp.h . . . 4  |-  H  =  ( Hom  `  D
)
5 funcixp.j . . . 4  |-  J  =  ( Hom  `  E
)
6 eqid 2454 . . . 4  |-  ( Id
`  D )  =  ( Id `  D
)
7 eqid 2454 . . . 4  |-  ( Id
`  E )  =  ( Id `  E
)
8 eqid 2454 . . . 4  |-  (comp `  D )  =  (comp `  D )
9 eqid 2454 . . . 4  |-  (comp `  E )  =  (comp `  E )
10 df-br 4440 . . . . . . 7  |-  ( F ( D  Func  E
) G  <->  <. F ,  G >.  e.  ( D 
Func  E ) )
111, 10sylib 196 . . . . . 6  |-  ( ph  -> 
<. F ,  G >.  e.  ( D  Func  E
) )
12 funcrcl 15351 . . . . . 6  |-  ( <. F ,  G >.  e.  ( D  Func  E
)  ->  ( D  e.  Cat  /\  E  e. 
Cat ) )
1311, 12syl 16 . . . . 5  |-  ( ph  ->  ( D  e.  Cat  /\  E  e.  Cat )
)
1413simpld 457 . . . 4  |-  ( ph  ->  D  e.  Cat )
1513simprd 461 . . . 4  |-  ( ph  ->  E  e.  Cat )
162, 3, 4, 5, 6, 7, 8, 9, 14, 15isfunc 15352 . . 3  |-  ( ph  ->  ( F ( D 
Func  E ) G  <->  ( F : B --> ( Base `  E
)  /\  G  e.  X_ z  e.  ( B  X.  B ) ( ( ( F `  ( 1st `  z ) ) J ( F `
 ( 2nd `  z
) ) )  ^m  ( H `  z ) )  /\  A. x  e.  B  ( (
( x G x ) `  ( ( Id `  D ) `
 x ) )  =  ( ( Id
`  E ) `  ( F `  x ) )  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x G z ) `  ( n ( <.
x ,  y >.
(comp `  D )
z ) m ) )  =  ( ( ( y G z ) `  n ) ( <. ( F `  x ) ,  ( F `  y )
>. (comp `  E )
( F `  z
) ) ( ( x G y ) `
 m ) ) ) ) ) )
171, 16mpbid 210 . 2  |-  ( ph  ->  ( F : B --> ( Base `  E )  /\  G  e.  X_ z  e.  ( B  X.  B
) ( ( ( F `  ( 1st `  z ) ) J ( F `  ( 2nd `  z ) ) )  ^m  ( H `
 z ) )  /\  A. x  e.  B  ( ( ( x G x ) `
 ( ( Id
`  D ) `  x ) )  =  ( ( Id `  E ) `  ( F `  x )
)  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x G z ) `  ( n ( <.
x ,  y >.
(comp `  D )
z ) m ) )  =  ( ( ( y G z ) `  n ) ( <. ( F `  x ) ,  ( F `  y )
>. (comp `  E )
( F `  z
) ) ( ( x G y ) `
 m ) ) ) ) )
1817simp2d 1007 1  |-  ( ph  ->  G  e.  X_ z  e.  ( B  X.  B
) ( ( ( F `  ( 1st `  z ) ) J ( F `  ( 2nd `  z ) ) )  ^m  ( H `
 z ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823   A.wral 2804   <.cop 4022   class class class wbr 4439    X. cxp 4986   -->wf 5566   ` cfv 5570  (class class class)co 6270   1stc1st 6771   2ndc2nd 6772    ^m cmap 7412   X_cixp 7462   Basecbs 14716   Hom chom 14795  compcco 14796   Catccat 15153   Idccid 15154    Func cfunc 15342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-map 7414  df-ixp 7463  df-func 15346
This theorem is referenced by:  funcf2  15356  funcfn2  15357  wunfunc  15387
  Copyright terms: Public domain W3C validator